Coupled cluster approach to nuclear reactions and the role of continuum in neutron rich nuclei

Gaute Hagen (ORNL)

Q

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Outline

- The nucleus as an open quantum systems
 - Halos and Borromean nuclei
 - Treating resonances and bound-states on equal footing
- Role of continuum on level ordering in light nuclei
- Impact of continuum on the neutron dripline and the evolution of shell structure in calcium isotopes
- Extending CCM to study elastic scattering
 - Computing the overlap function from CCM
 - Spectroscopic factors and continuum induced correlations
 - Elastic proton scattering of ⁴⁰Ca and neutron scattering of ⁶⁰Ca
- Inelastic reactions and breakup obsverables from CCM
 - Computing the response function by combining the Lorentz Integral Transform technique with CCM
 - Dipole response from CCM in light and medium mass nuclei
 - Problem of saturation and impact on dipole response/ polarizability

Nuclear landscape and consequences.

emission, fission...

Physics of nuclei at the edges of stability

From Wikipedia, the free encyclopedia:

In physics, an open quantum system is a quantum system which is found to be in interaction with an external quantum system, the environment. The open quantum system can be viewed as a distinguished part of a larger closed quantum system, the other part being the environment.

Nuclear halos a manifestation of openness

- ¹¹Li matter radii unusually large compared to neighboring nuclei.
- ¹¹Li is the holy grail of nuclear halos I. Tanihata et al, Phys. Rev. Lett. 55, 2676 (1985)

I. Tanihata et al. Phys. Rev. Lett. 55, 2676 (1985)

Interaction cross section measurements at Bevalac (790 MeV/u)

(almost) bare NN interaction weak in-medium effects

Borromean rings

G

Observation of a Large Reaction Cross Section in the Drip-Line Nucleus ²²C

Carbon-22, which has a nucleus comprised of 16 neutrons and 6 protons, is the heaviest atom yet discovered to exhibit a "halo nucleus."

Physics of nuclei at the edges of stability

The Berggren completeness treats bound, resonant and scattering states on equal footing.

Has been successfully applied in the shell model in the complex energy plane to light nuclei. For a review see

N. Michel et al J. Phys. G 36, 013101 (2009).

Physics of neutron rich nuclei is challenging and demanding

- Halo nuclei
- Neutron rich isotopes
- Clustering in nuclei, Hoyle state in ¹²C
- New magic numbers appear at the driplines

Many-body Correlations: Coupled-Cluster theory

Interactions: NN + 3NFs from Chiral EFT

Open channels: Gamow Shell Model

Ab-initio no-core shell model and resonanting group method for scattering

First ab-initio description of the parity inverted ground state in ¹¹Be. S. Quaglioni and P. Navratil PRL (2008)

Spectra of ⁶Li from NCSMC with chiral NN and 3NFs. Effect of continuum is significant on levels above the deuteron emission threshold. G. Hupin et al, PRL (2015)

Continuum induced correlations

Continuum shell model calculations of oxygen isotopes. The effect of continuum correlations for nuclei with low neutron emission thresholds can be significant. N. Michel et al, J. Phys. G **37** 064042 (2010).

Computing nuclei with A+1 Example: proton-halo state in ¹⁷F

- Separation energy of halo state is only 105 keV
- Continuum has to be treated properly
- Use Berggren basis with PA-EOM-CCSD(2p1h)

Effect of continuum on low-lying states in ¹⁷F

Single-particle basis consists of bound, resonance and scattering states

- Gamow basis for $s_{1/2} d_{5/2}$ and $d_{3/2}$ single-particle states
- Harmonic oscillator states for other partial waves

[[]G. Hagen, TP, M. Hjorth-Jensen, Phys. Rev. Lett. 104, 182501 (2010)]

Is ²⁸O a bound nucleus?

²³Ne

22F

21O

²⁰N

19C

²²Ne

21F

20O

19N

18C

²⁴Ne

23F

22O

21N

20C

Experimental situation

- "Last" stable oxygen isotope ²⁴O
- ^{25,26}O unstable (Hoffman et al 2008, Lunderberg et al 2012)
- ²⁸O not seen in experiments
- ³¹F exists (adding on proton shifts drip line by 6 neutrons!?)

Continuum shell model with HBUSD interaction predict ²⁸O unbound. A. Volya and V. Zelevinsky PRL (2005)

Shell model (sd shell) with monopole corrections based on threenucleon force predicts 2nd O as last stable isotope of oxygen. [Otsuka, Suzuki, Holt, Schwenk, Akaishi, PRL (2010), arXiv:0908.2607]

Excited states in neutron rich oxygen isotopes

Inclusion continuum and of schematic 3NFs: $k_F=1.05 \text{ fm}^{-1}$, $c_E=0.71$, $c_D=-0.2$

Hagen, Hjorth-Jensen, Jansen, Machleidt, Papenbrock, Phys. Rev. Lett. 108 242501 (2012)

Experiment

[Hoffman et al., PRC 83, 031303 (2011)] Unbound states in ²⁴O populated by knockout from ²⁶F. Observation of ²²O and two-neutron cascade. Speculation: single resonance or superposition of states with J^{π} = 1⁺ to 4⁺.

Effect of continuum on shell structure in neutron rich Calcium

11

8

14

8

2

5

- How do shell closures and magic numbers evolve towards the dripline?
- Is the naïve shell model picture valid at the neutron dripline?
- What are the mechanisms for new shell structure?

Neutron rich calcium isotopes

Hagen, Hjorth-Jensen, Jansen, Machleidt, Papenbrock, Phys. Rev. Lett. 109, 032502 (2012).

Spectra and shell evolution in Calcium isotopes

Effect of continuum on excited states in odd neutron rich Calcium isotopes

Effect of continuum on excited states in odd neutron rich Calcium isotopes

Effect of continuum on excited states in odd neutron rich Calcium isotopes

Towards nuclear reactions with coupledcluster theory

One-nucleon overlap functions

Elastic scattering, capture and transfer reactions of a nucleon on/to a target nucleus with mass A is determined by the one-nucleon overlap function

$$O_A^{A+1}(lj;r) = \sum_n \langle A || a_{nlj} || A+1 \rangle \phi_{nlj}(r)$$

The left ground-state for target nucleus A is given by: $\langle A|=\langle \Phi_0|L_0e^{-T}$

$$\langle \Phi_0 | L_0 e^{-T} H e^T = \langle \Phi_0 | L_0 \overline{H} = E_0 \langle \Phi_0 |$$

The A+1 final states are computed via particle-attached coupled-cluster method: $|A+1\rangle = R^{A+1}e^{T}|\Phi_{0}\rangle = e^{T}\left(\sum_{a}r^{a}a_{a}^{\dagger} + \frac{1}{2}\sum_{abi}r_{i}^{ab}a_{a}^{\dagger}a_{b}^{\dagger}a_{i}\right)|\Phi_{0}\rangle$ $\bar{H}R^{A+1}|\Phi_{0}\rangle = E^{A+1}R^{A+1}|\Phi_{0}\rangle$

Towards nuclear reactions with coupledcluster theory

One-nucleon overlap function from coupled cluster theory: Ø. Jensen et al PRC 82, 014310 (2010).

$$O_A^{A+1}(lj;r) = \sum_n \langle \Phi_0 | L_0 \overline{a_{nlj}} R^{A+1} | \Phi_0 \phi_{nlj}(r) \rangle$$
Bergren basis
ensures correct asymptotic behavior

The similarity transformed annihilation/creation operator calculated via the Baker-Campbell-Hausdorff commutator expansion:

$$\overline{a_p} = e^{-T} a_p e^T = [a_p, T]$$
$$\overline{a_p} = a_p + \sum_i t_i^p a_i + \frac{1}{2} \sum_{ijc} t_{ij}^{pc} a_c^{\dagger} a_j a_i$$

Treatment of long-range Coulomb effects

The A-nucleon Hamiltonian is: \hat{H}

We add and subtract a one-body Coulomb term:

$$= \sum_{1 \le i < j \le A} \left(\frac{(\vec{p}_i - \vec{p}_j)^2}{2mA} + \hat{V}_{NN}^{(i,j)} + \hat{V}_{Coul}^{(i,j)} + \hat{V}_{3Neff}^{(i,j)} \right)$$
$$V_{Coul} = U_{Coul}(r) + [V_{Coul} - U_{Coul}(r)]$$
$$U_{Coul}(r) \longrightarrow (Z - 1)e^2/r \text{ for } r \rightarrow +\infty$$

We construct the Coulomb Berggren basis by diagonalizing the 1-body Schrodinger equation In a basis of spherical Bessel functions: $p^2 \qquad \left[\frac{r - R_0}{r} \right]^{-1}$

$$h = \frac{\hat{p}^2}{2m} - V_o \left[1 + \exp\left(\frac{r - R_0}{d}\right) \right]^{-1} + U_{\text{Coul}}(r)$$

Numerical example: proton resonances in ¹⁷F In a Woods-Saxon potential

		$s_{1/2}$		$d_{3/2}$		$d_{5/2}$	
N_R	N_T	$\operatorname{Re}[E]$	Γ	$\operatorname{Re}[E]$	Γ	$\operatorname{Re}[E]$	Γ
5	15	1.1054	0.1446	5.0832	1.3519	1.4923	0.0038
5	20	1.1033	0.1483	5.0785	1.3525	1.4873	0.0079
10	25	1.0989	0.1360	5.0765	1.3525	1.4858	0.0093
10	30	1.0986	0.1366	5.0757	1.3529	1.4849	0.0103
15	40	1.0978	0.1351	5.0749	1.3531	1.4842	0.0111
15	50	1.0978	0.1353	5.0746	1.3533	1.4838	0.0114
20	60	1.0976	0.1349	5.0745	1.3533	1.4837	0.0116
30	70	1.0975	0.1346	5.0744	1.3534	1.4837	0.0117
(Michel 2011)		1.0975	0.1346	5.0744	1.3535	1.4836	0.0119

The one-body coulomb potential has a Logarithmic singularity at $Q_{l}(1)$:

$$U_{\text{Coul}}(k,k') = \langle k | U_{\text{Coul}}(r) - \frac{(Z-1)e^2}{r} | k' \rangle + \frac{(Z-1)e^2}{\pi} Q_\ell \left(\frac{k^2 + {k'}^2}{2kk'} \right)$$

The singularity is removed by **the off-diagonal method**: replace the singularity by a finite value depending on the quadrature **N. Michel Phys. Rev. C 83, 034325 (2011)**

Treatment of long-range Coulomb effects

Continuum induced correlations: Quenching of spectroscopic factors for proton removal in neutron rich oxygen isotopes

Strong asymmetry dependence on the SF for proton and neutron removal in neutron rich oxygen isotopes.

SF~1 for neutron removal while protons are strongly correlated SF ~0.6-0.7 in ^{22,24,28}O Spectroscopic factor is a useful tool to study correlations towards the dripline.

SF for proton removal in neutron rich ²⁴O show strong "quenching" pointing to large deviations from a mean-field like picture. G. Hagen et al Phys. Rev. Lett. 107, 032501 (2011).

Threshold effects and spectroscopic factors

Near the scattering threshold for one-neutron decay the spectroscopic factors are Significantly influenced by the presence of The continuum. The standard shell model

$$\langle \Psi_{A}^{J_{A}} || a_{n\ell j}^{+} || \Psi_{A-1}^{J_{A-1}} \rangle^{2}$$

approximation to spectroscopic factors completely fails in this region.

N. Michel et al Phys. Rev. C **75**, 031301 (2007) N. Michel et al Nucl. Phys. A **794**, 29 (2007)

Top and middle:

$${}^{6}\mathrm{He}(\mathrm{g.s.})|[{}^{5}\mathrm{He}(\mathrm{g.s.}) \otimes p_{3/2}]^{0^{+}}\rangle$$

Bottom :

 $\langle {}^{7}\mathrm{He}(\mathrm{g.s.}) | [{}^{6}\mathrm{He}(\mathrm{g.s.}) \otimes p_{3/2}] {}^{0^{+}} \rangle$

Elastic proton/neutron scattering on 40Ca

G. Hagen and N. Michel, Phys. Rev. C 86, 021602(R) (2012).

The one-nucleon overlap function:
$$\ O_A^{A+1}(lj;r) = \sum_n \langle A||a_{nlj}||A+1
angle \phi_{nlj}(r)$$

Beyond the range of the nuclear interaction the overlap functions take the form:

$$O_A^{A+1}(lj;kr) = C_{lj} \frac{W_{-\eta,l+1/2}(kr)}{r}, \ k = i\kappa$$

$$O_A^{A+1}(lj;kr) = C_{lj} \left[F_{\ell,\eta}(kr) - \tan \delta_l(k) G_{\ell,\eta}(kr) \right]$$

Elastic proton/neutron scattering on 40Ca

Differential cross section for elastic proton scattering on ⁴⁰Ca.

Fair agreement between theory and experiment for low-energy scattering.

G. Hagen and N. Michel Phys. Rev. C **86**, 021602(R) (2012).

Efimov physics around neutron rich 60Ca

G. Hagen, P. Hagen, H.-W. Hammer, and L. Platter, PRL 111, 132501 (2013)

Efimov physics around neutron rich 60Ca

- Halo EFT provides a model-independent description of halo nuclei
- Core + valence nucleons are effective degrees of freedom
- The coupling constants from the *n*-*n* and core-*n* effective range
- The expansion is given in powers of R/a with R ~ effective range
- Use coupled-cluster results for ⁶¹Ca to study signals of Efimov physics

The Halo EFT core *n*-*n* Lagrangian to leading order:

$$\mathcal{L} = \psi_c^{\dagger} \left(i\partial_0 + \frac{\vec{\nabla}^2}{2M} \right) \psi_c + \vec{\psi}_n^{\dagger} \left(i\partial_0 + \frac{\vec{\nabla}^2}{2m} \right) \vec{\psi}_n + \Delta_{nn} d_{nn}^{\dagger} d_{nn} + \Delta_{cn} d_{cn}^{\dagger} \vec{d}_{cn} + h d_{nn}^{\dagger} \psi_c^{\dagger} \psi_c d_{nn} - \left[g_{cn} \vec{\ell}_{cn}^{\dagger} \vec{\psi}_n \psi_c + \frac{g_{nn}}{2} d_{nn}^{\dagger} \left(\vec{\psi}_n^{\mathrm{T}} P \, \vec{\psi}_n \right) + \mathrm{h.c} \right] + \dots$$

Coupling constants given by *n*-*n* and core-*n* effective ranges

Three-body coupling

Efimov physics around neutron rich 60Ca

- ²²C is the largest known twoneutron halo R_{rms} ~5.4fm (Tanaka PRL 2010)
- Computed matter radii for ⁶²Ca indicates that it has the potential to be the largest and heaviest halo in the chart of nuclei

- For S_{2n} larger than ~ 230keV another state appears in the spectrum
- ⁶²Ca is likely to have an Efimov state (large halo)
- It is conceivable that ⁶²Ca displays an excited Efimov state

Break-up observables for medium-mass nuclei

Cross section is related to the Response Function in the continuum

$$S(\omega) = \sum_{f} \left| \left\langle \psi_{f} \left| \hat{O} \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

Cannot be calculated beyond 3-body break-up even for A=4

Solution: Lorentz Integral Transform method (Efros, Leidemann,Orlandini, Barnea, Bacca) Efros *et al.*,J. Phys. G: Nucl. Part. Phys. 34 (2007)

$$\mathcal{L}(\sigma, \Gamma) = \int d\omega \frac{S(\omega)}{(\omega - \sigma)^2 + \Gamma^2}$$

$$(H - E_0 - \sigma + i\Gamma) |\tilde{\Psi}\rangle = O|\Psi_0\rangle$$

 $= \langle ilde{\Psi} | ilde{\Psi}
angle$

Bound-state-like object. Need bound state technique to calculate it

$$R(z^*)e^T |\Phi_0\rangle = e^T \left(\sum_{ia} r_a^i a_a^\dagger a_i + \frac{1}{4} \sum_{abij} r_{ij}^{ab} a_a^\dagger a_b^\dagger a_j a_i \right) |\Phi_0\rangle$$

Coupled-cluster formulation of the Lorentz-Integral Transformation

Want to solve the Schrödinger like ($H-E_0-\sigma+i\Gamma)\,|\tilde{\Psi}\rangle=O|\Psi_0\rangle$ equation with a source term:

Solve via Equation Of Motion (EOM):

$$R(z^*)e^T |\Phi_0\rangle = e^T \left(\sum_{ia} r_a^i a_a^\dagger a_i + \frac{1}{4} \sum_{abij} r_{ij}^{ab} a_a^\dagger a_b^\dagger a_j a_i \right) |\Phi_0\rangle$$

By using the right and left EOM ansatze for $\tilde{\Psi}$ we can write down right/left EOM equations

Use BCH commutator expansion to compute similarity transforms:

$$(\overline{H} - E_0 - \sigma + i\Gamma) R |\Phi_0\rangle = \overline{O} |\Phi_0\rangle$$

$$\Phi_0 |\tilde{L} (\overline{H} - E_0 - \sigma - i\Gamma) = \langle \Phi_0 | L_0 \overline{O^{\dagger}} \qquad \overline{O^{\dagger}} = e^{-T} O^{\dagger} e^{T}$$

The Lorentz-Integral Transformation is then given: $\mathcal{L}(\sigma,\Gamma) = \langle \Phi_0 | \tilde{L}(z) R(z^*) | \Phi_0 \rangle$

Dipole response in 4He from coupled-cluster

S. Bacca, N. Barnea, G. Hagen, G. Orlandini, T. Papenbrock, PRL 111, 143402 (2013). S. Bacca, N. Barnea, G. Hagen, M. Miorelli, G. Orlandini, T. Papenbrock, PRC 90, 064610 (2014)

Giant dipole resonance in ¹⁶O N³LO Entem & Machleidt (NN only)

S. Bacca, N. Barnea, G. Hagen, G. Orlandini, T. Papenbrock, PRL 111, 143402 (2013).

Dipole response in ²²O

S. Bacca, N. Barnea, G. Hagen, M. Miorelli, G. Orlandini, T. Papenbrock, PRC 90, 064610 (2014)

Dipole response and polarizability in 40Ca N³LO Entem & Machleidt (NN only)

Accurate nuclear binding energies and radii from a chiral interaction

Our solution: simultaneous optimization of NN and 3NFs with input from selected nuclei up to A \sim 25 (NNLO_{sat}). A. Ekström *et al*, Phys. Rev. C **91**, 051301(R) (2015)

Dipole polarizability of 160

Backup slides

PHYSICAL REVIEW C, VOLUME 65, 044006

Detection of neutron clusters

F. M. Marqués,^{1,*} M. Labiche,^{1,†} N. A. Orr,¹ J. C. Angélique,¹ L. Axelsson,² B. Benoit,³ U. C. Bergmann,⁴ M. J. G. Borge,⁵ W. N. Catford,⁶ S. P. G. Chappell,⁷ N. M. Clarke,⁸ G. Costa,⁹ N. Curtis,^{6,‡} A. D'Arrigo,³ E. de Góes Brennand,³ F. de Oliveira Santos,¹⁰ O. Dorvaux,⁹ G. Fazio,¹¹ M. Freer,^{8,1} B. R. Fulton,^{8,§} G. Giardina,¹¹ S. Grévy,^{12,II}
D. Guillemaud-Mueller,¹² F. Hanappe,³ B. Heusch,⁹ B. Jonson,² C. Le Brun,^{1J} S. Leenhardt,¹² M. Lewitowicz,¹⁰
M. J. López,^{10,**} K. Markenroth,² A. C. Mueller,¹² T. Nilsson,^{2,††} A. Ninane,^{1,‡‡} G. Nyman,¹ I. Piqueras,⁵
K. Riisager,⁴ M. G. Saint Laurent,¹⁰ F. Sarazin,^{10,§§} S. M. Singer,⁸ O. Sorlin,¹² and L. Stuttgé⁹ ¹Laboratoire de Physique Corpusculaire, IN2P3-CNRS, ISMRa et Université de Caen, F-14050 Caen Cedex, France ²Experimentell Fysik, Chalmers Tekniska Högskola, S-412 96 Göteborg, Sweden ³Université Libre de Bruxelles, CP 226, B-1050 Bruxelles, Belgium ⁴Institut for Fysik og Astronomi, Aarhus Universitet, DK-8000 Aarhus C, Denmark ⁵Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain ⁶Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom ⁷Department of Nuclear Physics, University of Oxford, Keble Road, Oxford OX1 3RH, United Kingdom ⁸School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom ⁹Institut de Recherche Subatomique, IN2P3-CNRS, Université Louis Pasteur, BP 28, F-67037 Strasbourg Cedex, France ¹⁰GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen Cedex, France ¹¹Dipartimento di Fisica, Università di Messina, Salita Sperone 31, I-98166 Messina, Italy ¹²Institut de Physique Nucléaire, IN2P3-CNRS, F-91406 Orsay Cedex, France (Received 27 November 2001; published 1 April 2002)

A new approach to the production and detection of bound neutron clusters is presented. The technique is based on the breakup of beams of very neutron-rich nuclei and the subsequent detection of the recoiling proton in a liquid scintillator. The method has been tested in the breakup of intermediate energy $(30-50 \text{ MeV/nucleon})^{11}$ Li, ¹⁴Be, and ¹⁵B beams. Some six events were observed that exhibit the characteristics of a multineutron cluster liberated in the breakup of ¹⁴Be, most probably in the channel ¹⁰Be+⁴n. The various backgrounds that may mimic such a signal are discussed in detail.

DOI: 10.1103/PhysRevC.65.044006

PACS number(s): 21.45.+v, 25.10.+s, 21.10.Gv

nothing is known [4,5]. The discovery of such neutral systems as bound states would have far-reaching implications for many facets of nuclear physics. In the present paper, the production and detection of free neutron clusters is discussed.

The question as to whether neutral nuclei may exist has a long and checkered history that may be traced back to the early 1960s [5]. Forty years later, the only clear evidence in this respect is that the dineutron is particle unstable. Although ³n is the simplest multineutron candidate, the effects of pairing observed on the neutron drip line suggest that ^{4,6,8}n could exhibit bound states [6]. Concerning the tetraneutron, an upper limit on the binding energy of 3.1 MeV is provided by the particle stability of ⁸He, which does not decay into $\alpha + 4n$. Furthermore, if 4n was bound by more than 1 MeV, $\alpha + 4n$ would be the first particle threshold in ⁸He. As the breakup of ⁸He is dominated by the ⁶He channel [7], the tetraneutron, if bound, should be so by less than 1 MeV.

The majority of the calculations performed to date suggest that multineutron systems are unbound [4]. Interestingly, it was also found that subtle changes in the N-N potentials that do not affect the phase shift analyses may generate bound neutron clusters [5]. In addition to the complexity of such *ab initio* calculations, which include the uncertainties in manybody forces, the n-n interaction is the most poorly known N-N interaction, as demonstrated by the controversy regarding the determination of the scattering length a_{nn} [8]. The

0556-2813/2002/65(4)/044006(10)/\$20.00

Can Modern Nuclear Hamiltonians Tolerate a Bound Tetraneutron?

Steven C. Pieper*

Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA (Received 18 February 2003; published 27 June 2003)

I show that it does not seem possible to change modern nuclear Hamiltonians to bind a tetraneutron without destroying many other successful predictions of those Hamiltonians. This means that, should a recent experimental claim of a bound tetraneutron be confirmed, our understanding of nuclear forces will have to be significantly changed. I also point out some errors in previous theoretical studies of this problem.

Theory does not support the existence of a tetra neutron.

FIG. 3: Energies of nuclei and neutron clusters computed with the AV18/IL2 Hamiltonian with modified NN potentials (${}^{1}S_{0}-2\pi$ and ${}^{1}S_{0}-\text{AV1'}$) and with no modification (AV18), compared with experimental values for known nuclei.

Superheavy hydrogen isotopes.

The most exotic system ever found

System with a N/Z =6 can exist ! Gives important information on the existence of a tetra neutron (4N).

Fitting to a Breit-Wigner distribution the extracted resonance value is 0.57 MeV above the 3H+4N threshold and with a width 0.09 MeV.

Need for theory

M. Caamano PRL 99, 062502 (2007)

FIG. 4. Excitation energy distribution for the identified ⁷H events. The solid function is the Breit-Wigner distribution resulting from the fit to the experimental events. The data are represented with the empty histogram merely as a guide to the eye, with a 2.5 MeV binning corresponding to the average estimated uncertainty.

Clustering in nuclei a near threshold phenomena

Cluster states near threshold.

Alpha Cluster Condensation in ¹²C and ¹⁶O

A. Tohsaki,¹ H. Horiuchi,² P. Schuck,³ and G. Röpke⁴

¹Department of Fine Materials Engineering, Shinshu University, Ueda 386-8567, Japan ²Department of Physics, Kyoto University, Kyoto 606-8502, Japan ³Institut de Physique Nucléaire, F-91406 Orsay Cedex, France ⁴FB Physik, Universität Rostock, D-18051 Rostock, Germany (Received 29 June 2001; published 17 October 2001)

A new α -cluster wave function is proposed which is of the α -particle condensate type. Applications to ¹²C and ¹⁶O show that states of low density close to the 3 and 4 α -particle thresholds in both nuclei are possibly of this kind. It is conjectured that all self-conjugate 4*n* nuclei may show similar features.

DOI: 10.1103/PhysRevLett.87.192501

PACS numbers: 21.60.Gx, 03.75.Fi, 21.10.Gv, 27.20.+n

PRL 104, 042701 (2010)	Selected for a Viewpoint in <i>Physics</i> PHYSICAL REVIEW LETTERS	week ending 29 JANUARY 2010
Novel Manife ii	Station of α -Clustering Structures: New " α of α -Clustering Structures: New " α of α -Clustering Structures for α -Cl	$\alpha + {}^{208}$ Pb" States becays
A. Ast	ter, ¹ P. Petkov, ^{1,2} MG. Porquet, ¹ D. S. Delion, ^{3,4} and	d P. Schuck ⁵
¹ CS.	NSM, IN2P3-CNRS and Université Paris-Sud, 91405 Orsa Pasagnah and Nuclean Engran, Pulagnian Anadomy of Sa	ay, France
³ Horia Hulubei National I ⁴ Academy of	Research and Nuclear Energy, Bulgarian Academy of Sci nstitute of Physics and Nuclear Engineering 407 Atomisti Romanian Scientists, 54 Splaiul Independentei, 050094 B	ilor, 077125 Bucharest, Romania Bucharest, Romania

⁵IPN, IN2P3-CNRS and Université Paris-Sud, 91406 Orsay, France

(Received 15 September 2009; published 25 January 2010)

Excited states in ²¹²Po were populated by α transfer using the ²⁰⁸Pb(¹⁸O, ¹⁴C) reaction, and their deexcitation γ rays were studied with the Euroball array. Several levels were found to decay by a unique *E*1 transition ($E_{\gamma} < 1$ MeV) populating the yrast state with the same spin value. Their lifetimes were measured by the Doppler-shift attenuation method. The values, found in the range 0.1–1.4 ps, lead to very enhanced transitions, $B(E1) = 2 \times 10^{-2}$ – 1×10^{-3} W.u. These results are discussed in terms of an α -cluster structure which gives rise to states with non-natural-parity values, provided that the composite system cannot rotate collectively, as expected in the " $\alpha + ^{208}$ Pb" case. Such states due to the oscillatory motion of the α -core distance are observed for the first time.

DOI: 10.1103/PhysRevLett.104.042701

PACS numbers: 25.70.Hi, 21.60.Gx, 23.20.-g, 27.80.+w

Halo structures

Thomas-Ehrmann effect

Spectra and matter distribution modified by the proximity of scattering continuum

Asymmetry dependence and spectroscopic factors

- •Spectroscopic factors are not observables
- They are extracted from a cross section based on a specific structure and reaction model
 Structure and reaction models needs
- to be consistent!

Theoretical cross section:

C. Barbieri, W.H.Dickhoff, Int. Jour. Mod. Phys. A24, 2060 (2009).

Self-consistent green's function method show rather weak asymmetry dependence for the spectroscopic factor.

Densities and radii from coupled-cluster theory

We solve for the right and left ground state of the similarity transformed Hamiltonian $e^{-T}H_N e^T |\phi_0\rangle = \overline{H_N} |\phi_0\rangle = E_{CC} |\phi_0\rangle \qquad \langle \phi_0 | L_0 \overline{H_N} = E_{CC} \langle \phi_0 | L_0 | L_$

The density matrix is computed within coupled-cluster method as:

$$\rho_{pq} = \langle \Psi_0 | a_p^{\dagger} a_q | \Psi_0 \rangle = \langle \phi_0 | L e^{-T} a_p^{\dagger} a_q e^T | \phi_0 \rangle = \langle \phi_0 | L a_p^{\dagger} a_q | \phi_0 \rangle$$

The coupled-cluster wave function factorizes to a good approximation into an intrinsic and center of mass part, $\Psi = \psi_{in} \Gamma$ where the center of mass part is a Gaussian with a fixed oscillator frequency independent of single-particle basis GH, T. Papenbrock and D. Dean et al, Phys. Rev. Lett. **103**, 062503 (2009)

We can obtain the intrinsic density by a deconvolution of the laboratory density B. G. Giraud, Phys. Rev. C **77**, 014311 (2008)

$$A^{-1}\rho(r) = A^{-1}\int dR \ [\Gamma(R)]^2 \sigma \left[\frac{A}{A-1}(r-R)\right]$$

Lab. density Center of mass part Intrinsic density

Densities and radii from coupled-cluster theory

- Relative energies in ²¹⁻²⁴O depend weakly on the resolution scale
- 2. We clearly see shell structure appearing in the matter densities for ²¹⁻²⁴O
- 3. Matter and charge radii depend on the resolution scale, however relative difference which is relevant for isotope shift measurements does not

²³O interaction cross section (scattering off ¹²C target @ GSI)

Experimental radii extracted from matter distribution within Glauber model. Main result of new measurement: ²³O follows systematics; interaction cross section consistent with separation energies. R. Kanungo *et al* Phys. Rev. C **84**, 061304 (2011)

Resolving the anomaly in the cross section of ²³O

The anamoly of ²³O

New measurements (R. Kanungo) of the ²³O cross section and coupled cluster calculations show that ²³O is not consistent with a one-neutron halo picture

TABLE I: Measured interaction cross sections and the root mean square point matter radii $(R_{rms}^m(\text{ex.}))$ for ^{22–23}O.

Isotope	$\sigma_I(\Delta\sigma)$	$\Delta \sigma(\text{Stat.})$	$\Delta \sigma(\text{Syst.})$	R_{rms}^m (ex.)
	(mb)	(mb)	(mb)	(fm)
^{22}O	1123(24)	18.5	15.3	2.75 ± 0.15
²³ O	1216(41)	33.1	24.7	2.95 ± 0.23

Oxygen isotopes from chiral interactions

- Inclusion of effective 3NF places dripline at ²⁵O.
- Overall the odd-even staggering in the neutron rich oxygen is well reproduced.
- We find ²⁶O to unbound with respect to ²⁴O by ~100keV, agreement with E. Lunderberg et al., Phys. Rev. Lett. 108 (2012) 142503
- We find ²⁸O to be unbound with a resonance width of ~2MeV

G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt, T. Papenbrock, Phys. Rev. Lett. 108, 242501 (2012).

Chiral three-nucleon force at order N2LO. k_f=1.05fm⁻¹, $C_D = 0.2$, $C_F = 0.71$ (fitted to to the binding energy of ¹⁶O and ²²O). -100 ← → NN only -110 • Experiment Effective 3NF -120 -130 E (MeV) -140 -150 -160 -170 15 23 18 19 2021 22 24 25 26 16