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Slater determinants as basis states
The simplest possible choice for many-body wavefunctions are product wave-
functions. That is

Ψ(x1, x2, x3, . . . , xA) ≈ φ1(x1)φ2(x2)φ3(x3) . . .

because we are really only good at thinking about one particle at a time. Such
product wavefunctions, without correlations, are easy to work with; for example,
if the single-particle states φi(x) are orthonormal, then the product wavefunctions
are easy to orthonormalize.

Similarly, computing matrix elements of operators are relatively easy, because
the integrals factorize.

The price we pay is the lack of correlations, which we must build up by using
many, many product wavefunctions.

Because we have fermions, we are required to have antisymmetric wavefunc-
tions, that is

Ψ(x1, x2, x3, . . . , xA) = −Ψ(x2, x1, x3, . . . , xA)

etc. This is accomplished formally by using the determinantal formalism

Ψ(x1, x2, . . . , xA) = 1√
A!

det
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φ1(x1) φ1(x2) . . . φ1(xA)
φ2(x1) φ2(x2) . . . φ2(xA)

...
φA(x1) φA(x2) . . . φA(xA)
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Product wavefunction + antisymmetry (Pauli principle) = Slater determinant.
Properties of the determinant (interchange of any two rows or any two

columns yields a change in sign; thus no two rows and no two columns can be
the same) lead to the following consequence of the Pauli principle:

• No two particles can be at the same place (two columns the same); and

• No two particles can be in the same state (two rows the same).

As a practical matter, however, Slater determinants beyond N = 4 quickly
become unwieldy. Thus we turn to the occupation representation or second
quantization to simplify calculations.

The occupation representation, using fermion creation and annihilation
operators, is compact and efficient. It is also abstract and, at first encounter, not
easy to internalize. It is inspired by other operator formalism, such as the ladder
operators for the harmonic oscillator or for angular momentum, but unlike those
cases, the operators do not have coordinate space representations.

Instead, one can think of fermion creation/annihilation operators as a game
of symbols that compactly reproduces what one would do, albeit clumsily, with
full coordinate-space Slater determinants.

We start with a set of orthonormal single-particle states {φi(x)}. (Note: this
requirement, and others, can be relaxed, but leads to a more involved formalism.)
Any orthonormal set will do.

To each single-particle state φi(x) we associate a creation operator â†i and
an annihilation operator âi.

When acting on the vacuum state |0〉, the creation operator â†i causes a
particle to occupy the single-particle state φi(x):

φi(x)→ â†i |0〉

But with multiple creation operators we can occupy multiple states:

φi(x)φj(x′)φk(x′′)→ â†i â
†
j â
†
k|0〉.

Now we impose antisymmetry, by having the fermion operators satisfy anti-
commutation relations:

â†i â
†
j + â†j â

†
i = [â†i , â

†
j ]+ = {â†i , â

†
j} = 0

so that
â†i â
†
j = −â†j â

†
i

Because of this property, automatically â†i â
†
i = 0, enforcing the Pauli exclusion

principle. Thus when writing a Slater determinant using creation operators,

â†i â
†
j â
†
k . . . |0〉

each index i, j, k, . . . must be unique.
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Full Configuration Interaction Theory
We have defined the ansatz for the ground state as

|Φ0〉 =

∏
i≤F

â†i

 |0〉,
where the index i defines different single-particle states up to the Fermi level.
We have assumed that we have N fermions. A given one-particle-one-hole (1p1h)
state can be written as

|Φa
i 〉 = â†aâi|Φ0〉,

while a 2p2h state can be written as

|Φab
ij 〉 = â†aâ

†
bâj âi|Φ0〉,

and a general ApAh state as

|Φabc...
ijk...〉 = â†aâ

†
bâ
†
c . . . âkâj âi|Φ0〉.

We use letters ijkl . . . for states below the Fermi level and abcd . . . for states
above the Fermi level. A general single-particle state is given by letters pqrs . . . .

We can then expand our exact state function for the ground state as

|Ψ0〉 = C0|Φ0〉+
∑
ai

Ca
i |Φa

i 〉+
∑
abij

Cab
ij |Φab

ij 〉+ · · · = (C0 + Ĉ)|Φ0〉,

where we have introduced the so-called correlation operator

Ĉ =
∑
ai

Ca
i â
†
aâi +

∑
abij

Cab
ij â
†
aâ
†
bâj âi + . . .

Since the normalization of Ψ0 is at our disposal and since C0 is by hypothesis
non-zero, we may arbitrarily set C0 = 1 with corresponding proportional changes
in all other coefficients. Using this so-called intermediate normalization we have

〈Ψ0|Φ0〉 = 〈Φ0|Φ0〉 = 1,

resulting in
|Ψ0〉 = (1 + Ĉ)|Φ0〉.

We rewrite

|Ψ0〉 = C0|Φ0〉+
∑
ai

Ca
i |Φa

i 〉+
∑
abij

Cab
ij |Φab

ij 〉+ . . . ,

in a more compact form as

|Ψ0〉 =
∑
P H

CP
HΦP

H =
(∑

P H

CP
HÂ

P
H

)
|Φ0〉,
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where H stands for 0, 1, . . . , n hole states and P for 0, 1, . . . , n particle states.
Our requirement of unit normalization gives

〈Ψ0|Ψ0〉 =
∑
P H

|CP
H |2 = 1,

and the energy can be written as

E = 〈Ψ0|Ĥ|Ψ0〉 =
∑

P P ′HH′

C∗PH 〈ΦP
H |Ĥ|ΦP ′

H′〉CP ′

H′ .

Normally

E = 〈Ψ0|Ĥ|Ψ0〉 =
∑

P P ′HH′

C∗PH 〈ΦP
H |Ĥ|ΦP ′

H′〉CP ′

H′ ,

is solved by diagonalization setting up the Hamiltonian matrix defined by the
basis of all possible Slater determinants. A diagonalization is equivalent to
finding the variational minimum of

〈Ψ0|Ĥ|Ψ0〉 − λ〈Ψ0|Ψ0〉,

where λ is a variational multiplier to be identified with the energy of the system.
The minimization process results in

δ
[
〈Ψ0|Ĥ|Ψ0〉 − λ〈Ψ0|Ψ0〉

]
=

∑
P ′H′

{
δ[C∗PH ]〈ΦP

H |Ĥ|ΦP ′

H′〉CP ′

H′ + C∗PH 〈ΦP
H |Ĥ|ΦP ′

H′〉δ[CP ′

H′ ]− λ(δ[C∗PH ]CP ′

H′ + C∗PH δ[CP ′

H′ ]
}

= 0.

Since the coefficients δ[C∗PH ] and δ[CP ′

H′ ] are complex conjugates it is necessary
and sufficient to require the quantities that multiply with δ[C∗PH ] to vanish.

This leads to ∑
P ′H′

〈ΦP
H |Ĥ|ΦP ′

H′〉CP ′

H′ − λCP
H = 0,

for all sets of P and H.
If we then multiply by the corresponding C∗PH and sum over PH we obtain∑

P P ′HH′

C∗PH 〈ΦP
H |Ĥ|ΦP ′

H′〉CP ′

H′ − λ
∑
P H

|CP
H |2 = 0,

leading to the identification λ = E. This means that we have for all PH sets∑
P ′H′

〈ΦP
H |Ĥ − E|ΦP ′

H′〉 = 0. (1)

An alternative way to derive the last equation is to start from

(Ĥ − E)|Ψ0〉 = (Ĥ − E)
∑

P ′H′

CP ′

H′ |ΦP ′

H′〉 = 0,
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and if this equation is successively projected against all ΦP
H in the expansion of

Ψ, we end up with Eq. (1).
One solves this equation normally by diagonalization. If we are able to solve

this equation exactly (that is numerically exactly) in a large Hilbert space (it
will be truncated in terms of the number of single-particle states included in the
definition of Slater determinants), it can then serve as a benchmark for other
many-body methods which approximate the correlation operator Ĉ.

Example of a Hamiltonian matrix
Suppose, as an example, that we have six fermions below the Fermi level. This
means that we can make at most 6p− 6h excitations. If we have an infinity of
single particle states above the Fermi level, we will obviously have an infinity
of say 2p− 2h excitations. Each such way to configure the particles is called a
configuration. We will always have to truncate in the basis of single-particle
states. This gives us a finite number of possible Slater determinants. Our
Hamiltonian matrix would then look like (where each block can have a large
dimensionalities):

0p− 0h 1p− 1h 2p− 2h 3p− 3h 4p− 4h 5p− 5h 6p− 6h
0p− 0h x x x 0 0 0 0
1p− 1h x x x x 0 0 0
2p− 2h x x x x x 0 0
3p− 3h 0 x x x x x 0
4p− 4h 0 0 x x x x x
5p− 5h 0 0 0 x x x x
6p− 6h 0 0 0 0 x x x

with a two-body force. Why are there non-zero blocks of elements? If we use
a Hartree-Fock basis, this corresponds to a particular unitary transformation
where matrix elements of the type 〈0p− 0h|Ĥ|1p− 1h〉 = 〈Φ0|Ĥ|Φa

i 〉 = 0 and
our Hamiltonian matrix becomes

0p− 0h 1p− 1h 2p− 2h 3p− 3h 4p− 4h 5p− 5h 6p− 6h
0p− 0h x̃ 0 x̃ 0 0 0 0
1p− 1h 0 x̃ x̃ x̃ 0 0 0
2p− 2h x̃ x̃ x̃ x̃ x̃ 0 0
3p− 3h 0 x̃ x̃ x̃ x̃ x̃ 0
4p− 4h 0 0 x̃ x̃ x̃ x̃ x̃
5p− 5h 0 0 0 x̃ x̃ x̃ x̃
6p− 6h 0 0 0 0 x̃ x̃ x̃

If we do not make any truncations in the possible sets of Slater determinants
(many-body states) we can make by distributing A nucleons among n single-
particle states, we call such a calculation for

• Full configuration interaction theory
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If we make truncations, we have different possibilities

• The standard nuclear shell-model. Here we define an effective Hilbert space
with respect to a given core. The calculations are normally then performed
for all many-body states that can be constructed from the effective Hilbert
spaces. This approach requires a properly defined effective Hamiltonian

• We can truncate in the number of excitations. For example, we can limit
the possible Slater determinants to only 1p− 1h and 2p− 2h excitations.
This is called a configuration interaction calculation at the level of singles
and doubles excitations, or just CISD.

• We can limit the number of excitations in terms of the excitation energies.
If we do not define a core, this defines normally what is called the no-core
shell-model approach.

What happens if we have a three-body interaction and a Hartree-Fock basis?
Full configuration interaction theory calculations provide in principle, if we

can diagonalize numerically, all states of interest. The dimensionality of the
problem explodes however quickly.

The total number of Slater determinants which can be built with say N
neutrons distributed among n single particle states is(

n
N

)
= n!

(n−N)!N ! .

For a model space which comprises the first for major shells only 0s, 0p, 1s0d
and 1p0f we have 40 single particle states for neutrons and protons. For the
eight neutrons of oxygen-16 we would then have(

40
8

)
= 40!

(32)!8! ∼ 109,

and multiplying this with the number of proton Slater determinants we end up
with approximately witha dimensionality d of d ∼ 1018.

This number can be reduced if we look at specific symmetries only. However,
the dimensionality explodes quickly!

• For Hamiltonian matrices of dimensionalities which are smaller than
d ∼ 105, we would use so-called direct methods for diagonalizing the
Hamiltonian matrix

• For larger dimensionalities iterative eigenvalue solvers like Lanczos’ method
are used. The most efficient codes at present can handle matrices of
d ∼ 1010.
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A non-practical way of solving the eigenvalue problem
For reasons to come (links with Coupled-Cluster theory and Many-Body pertur-
bation theory), we will rewrite Eq. (1) as a set of coupled non-linear equations in
terms of the unknown coefficients CP

H . To obtain the eigenstates and eigenvalues
in terms of non-linear equations is not a very practical approach. However,
it serves the scope of linking FCI theory with approximative solutions to the
many-body problem.

To see this, we look at the contributions arising from

〈ΦP
H | = 〈Φ0|

in Eq. (1), that is we multiply with 〈Φ0| from the left in

(Ĥ − E)
∑

P ′H′

CP ′

H′ |ΦP ′

H′〉 = 0.

If we assume that we have a two-body operator at most, Slater’s rule gives then
an equation for the correlation energy in terms of Ca

i and Cab
ij only. We get then

〈Φ0|Ĥ − E|Φ0〉+
∑
ai

〈Φ0|Ĥ − E|Φa
i 〉Ca

i +
∑
abij

〈Φ0|Ĥ − E|Φab
ij 〉Cab

ij = 0,

or
E − E0 = ∆E =

∑
ai

〈Φ0|Ĥ|Φa
i 〉Ca

i +
∑
abij

〈Φ0|Ĥ|Φab
ij 〉Cab

ij ,

where the energy E0 is the reference energy and ∆E defines the so-called
correlation energy. The single-particle basis functions could be the results of a
Hartree-Fock calculation or just the eigenstates of the non-interacting part of
the Hamiltonian.

In our notes on Hartree-Fock calculations, we have already computed the
matrix 〈Φ0|Ĥ|Φa

i 〉 and 〈Φ0|Ĥ|Φab
ij 〉. If we are using a Hartree-Fock basis, then

the matrix elements 〈Φ0|Ĥ|Φa
i 〉 = 0 and we are left with a correlation energy

given by
E − E0 = ∆EHF =

∑
abij

〈Φ0|Ĥ|Φab
ij 〉Cab

ij .

Inserting the various matrix elements we can rewrite the previous equation
as

∆E =
∑
ai

〈i|f̂ |a〉Ca
i +

∑
abij

〈ij|v̂|ab〉Cab
ij .

This equation determines the correlation energy but not the coefficients C. We
need more equations. Our next step is to set up

〈Φa
i |Ĥ−E|Φ0〉+

∑
bj

〈Φa
i |Ĥ−E|Φb

j〉Cb
j +
∑
bcjk

〈Φa
i |Ĥ−E|Φbc

jk〉Cbc
jk+

∑
bcdjkl

〈Φa
i |Ĥ−E|Φbcd

jkl〉Cbcd
jkl = 0,
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as this equation will allow us to find an expression for the coefficents Ca
i since

we can rewrite this equation as

〈i|f̂ |a〉+〈Φa
i |Ĥ|Φa

i 〉Ca
i +

∑
bj 6=ai

〈Φa
i |Ĥ|Φb

j〉Cb
j +
∑
bcjk

〈Φa
i |Ĥ|Φbc

jk〉Cbc
jk+

∑
bcdjkl

〈Φa
i |Ĥ|Φbcd

jkl〉Cbcd
jkl = ECa

i .

We see that on the right-hand side we have the energy E. This leads to a
non-linear equation in the unknown coefficients. These equations are normally
solved iteratively ( that is we can start with a guess for the coefficients Ca

i ). A
common choice is to use perturbation theory for the first guess, setting thereby

Ca
i = 〈i|f̂ |a〉

εi − εa
.

The observant reader will however see that we need an equation for Cbc
jk and

Cbcd
jkl as well. To find equations for these coefficients we need then to continue

our multiplications from the left with the various ΦP
H terms.

For Cbc
jk we need then

〈Φab
ij |Ĥ − E|Φ0〉+

∑
kc

〈Φab
ij |Ĥ − E|Φc

k〉Cc
k+

∑
cdkl

〈Φab
ij |Ĥ−E|Φcd

kl 〉Ccd
kl +

∑
cdeklm

〈Φab
ij |Ĥ−E|Φcde

klm〉Ccde
klm+

∑
cdefklmn

〈Φab
ij |Ĥ−E|Φ

cdef
klmn〉C

cdef
klmn = 0,

and we can isolate the coefficients Ccd
kl in a similar way as we did for the

coefficients Ca
i . A standard choice for the first iteration is to set

Cab
ij = 〈ij|v̂|ab〉

εi + εj − εa − εb
.

At the end we can rewrite our solution of the Schroedinger equation in terms of
n coupled equations for the coefficients CP

H . This is a very cumbersome way of
solving the equation. However, by using this iterative scheme we can illustrate
how we can compute the various terms in the wave operator or correlation
operator Ĉ. We will later identify the calculation of the various terms CP

H

as parts of different many-body approximations to full CI. In particular, we
can relate this non-linear scheme with Coupled Cluster theory and many-body
perturbation theory.

Summarizing FCI and bringing in approximative methods
If we can diagonalize large matrices, FCI is the method of choice since:

• It gives all eigenvalues, ground state and excited states

• The eigenvectors are obtained directly from the coefficients CP
H which

result from the diagonalization
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• We can compute easily expectation values of other operators, as well as
transition probabilities

• Correlations are easy to understand in terms of contributions to a given
operator beyond the Hartree-Fock contribution. This is the standard
approach in many-body theory.

The correlation energy is defined as, with a two-body Hamiltonian,

∆E =
∑
ai

〈i|f̂ |a〉Ca
i +

∑
abij

〈ij|v̂|ab〉Cab
ij .

The coefficients C result from the solution of the eigenvalue problem. The
energy of say the ground state is then

E = Eref + ∆E,

where the so-called reference energy is the energy we obtain from a Hartree-Fock
calculation, that is

Eref = 〈Φ0|Ĥ|Φ0〉.

However, as we have seen, even for a small case like the four first major shells
and a nucleus like oxygen-16, the dimensionality becomes quickly intractable. If
we wish to include single-particle states that reflect weakly bound systems, we
need a much larger single-particle basis. We need thus approximative methods
that sum specific correlations to infinite order.

Popular methods are

• Many-body perturbation theory (in essence a Taylor expansion)

• Coupled cluster theory (coupled non-linear equations)

• Green’s function approaches (matrix inversion)

• Similarity group transformation methods (coupled ordinary differential
equations

All these methods start normally with a Hartree-Fock basis as the calculational
basis.

Building a many-body basis
Here we will discuss how we can set up a single-particle basis which we can use in
the various parts of our projects, from the simple pairing model to infinite nuclear
matter. We will use here the simple pairing model to illustrate in particular how
to set up a single-particle basis. We will also use this do discuss standard FCI
approaches like:

1. Standard shell-model basis in one or two major shells

2. Full CI in a given basis and no truncations
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3. CISD and CISDT approximations

4. No-core shell model and truncation in excitation energy

An important step in an FCI code is to construct the many-body basis.
While the formalism is independent of the choice of basis, the effectiveness

of a calculation will certainly be basis dependent.
Furthermore there are common conventions useful to know.
First, the single-particle basis has angular momentum as a good quantum

number. You can imagine the single-particle wavefunctions being generated
by a one-body Hamiltonian, for example a harmonic oscillator. Modifications
include harmonic oscillator plus spin-orbit splitting, or self-consistent mean-field
potentials, or the Woods-Saxon potential which mocks up the self-consistent
mean-field. For nuclei, the harmonic oscillator, modified by spin-orbit splitting,
provides a useful language for describing single-particle states.

Each single-particle state is labeled by the following quantum numbers:

• Orbital angular momentum l

• Intrinsic spin s = 1/2 for protons and neutrons

• Angular momentum j = l ± 1/2

• z-component jz (or m)

• Some labeling of the radial wavefunction, typically n the number of nodes
in the radial wavefunction, but in the case of harmonic oscillator one can
also use the principal quantum number N , where the harmonic oscillator
energy is (N + 3/2)~ω. For our nuclear matter projects, you will need to
change the quantum numbers to those relevant for calculations

in three-dimensional cartesian basis, see the relevante lectures.
In this format one labels states by n(l)j , with (l) replaced by a letter: s for

l = 0, p for l = 1, d for l = 2, f for l = 3, and thenceforth alphabetical.
In practice the single-particle space has to be severely truncated. This

truncation is typically based upon the single-particle energies, which is the
effective energy from a mean-field potential.

Sometimes we freeze the core and only consider a valence space. For example,
one may assume a frozen 4He core, with two protons and two neutrons in the
0s1/2 shell, and then only allow active particles in the 0p1/2 and 0p3/2 orbits.

Another example is a frozen 16O core, with eight protons and eight neutrons
filling the 0s1/2, 0p1/2 and 0p3/2 orbits, with valence particles in the 0d5/2, 1s1/2
and 0d3/2 orbits.

Sometimes we refer to nuclei by the valence space where their last nucleons
go. So, for example, we call 12C a p-shell nucleus, while 26Al is an sd-shell
nucleus and 56Fe is a pf -shell nucleus.

There are different kinds of truncations.
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• For example, one can start with ‘filled’ orbits (almost always the lowest),
and then allow one, two, three... particles excited out of those filled orbits.
These are called 1p-1h, 2p-2h, 3p-3h excitations.

• Alternately, one can state a maximal orbit and allow all possible configura-
tions with particles occupying states up to that maximum. This is called
full configuration.

• Finally, for particular use in nuclear physics, there is the energy truncation,
also called the N~Ω or Nmax truncation.

Here one works in a harmonic oscillator basis, with each major oscillator shell
assigned a principal quantum number N = 0, 1, 2, 3, .... The N~Ω or Nmax

truncation: Any configuration is given an noninteracting energy, which is the
sum of the single-particle harmonic oscillator energies. (Thus this ignores spin-
orbit splitting.)

Excited state are labeled relative to the lowest configuration by the number
of harmonic oscillator quanta.

This truncation is useful because if one includes all configuration up to some
Nmax, and has a translationally invariant interaction, then the intrinsic motion
and the center-of-mass motion factor. In other words, we can know exactly the
center-of-mass wavefunction.

In almost all cases, the many-body Hamiltonian is rotationally invariant.
This means it commutes with the operators Ĵ2, Ĵz and so eigenstates will have
good J,M . Furthermore, the eigenenergies do not depend upon the orientation
M .

Therefore we can choose to construct a many-body basis which has fixed M ;
this is called an M -scheme basis.

Alternately, one can construct a many-body basis which has fixed J , or a
J-scheme basis.

The Hamiltonian matrix will have smaller dimensions (a factor of 10 or
more) in the J-scheme than in the M -scheme. On the other hand, as we’ll
show in the next slide, the M -scheme is very easy to construct with Slater
determinants, while the J-scheme basis states, and thus the matrix elements,
are more complicated, almost always being linear combinations of M -scheme
states. J-scheme bases are important and useful, but we’ll focus on the simpler
M -scheme.

The quantum numberm is additive (because the underlying group is Abelian):
if a Slater determinant â†i â

†
j â
†
k . . . |0〉 is built from single-particle states all with

good m, then the total

M = mi +mj +mk + . . .

This is not true of J , because the angular momentum group SU(2) is not Abelian.
The upshot is that

• It is easy to construct a Slater determinant with good total M ;
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• It is trivial to calculate M for each Slater determinant;

• So it is easy to construct an M -scheme basis with fixed total M .

Note that the individualM -scheme basis states will not, in general, have good to-
tal J . Because the Hamiltonian is rotationally invariant, however, the eigenstates
will have good J . (The situation is muddied when one has states of different J
that are nonetheless degenerate.)

Example: two j = 1/2 orbits

Index n l j mj

1 0 0 1/2 -1/2
2 0 0 1/2 1/2
3 1 0 1/2 -1/2
4 1 0 1/2 1/2

Note that the order is arbitrary. There are
(

4
2

)
= 6 two-particle states, which

we list with the total M :
Occupied M

1,2 0
1,3 -1
1,4 0
2,3 0
2,4 1
3,4 0

and 1 each with M = ±1.
As another example, consider using only single particle states from the 0d5/2

space. They have the following quantum numbers

Index n l j mj

1 0 2 5/2 -5/2
2 0 2 5/2 -3/2
3 0 2 5/2 -1/2
4 0 2 5/2 1/2
5 0 2 5/2 3/2
6 0 2 5/2 5/2

There are
(

6
2

)
= 15 two-particle states, which we list with the total M :

Occupied M Occupied M Occupied M
1,2 -4 2,3 -2 3,5 1
1,3 -3 2,4 -1 3,6 2
1,4 -2 2,5 0 4,5 2
1,5 -1 2,6 1 4,6 3
1,6 0 3,4 0 5,6 4
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Example case: pairing Hamiltonian, the warm-up project
We consider a space with 2Ω single-particle states, with each state labeled by
k = 1, 2, 3,Ω and m = ±1/2. The convention is that the state with k > 0 has
m = +1/2 while −k has m = −1/2.

The Hamiltonian we consider is

Ĥ = −g2 P̂+P̂−,

where
P̂+ =

∑
k>0

â†kâ
†
−k.

and P̂− = (P̂+)†.
This problem can be solved using what is called the quasi-spin formalism to

obtain the exact results. Thereafter we will try again using the explicit Slater
determinant formalism.

In the first part project we will consider four doubly degenerate single-particle
states, resulting in eight single-particle states as shown here

Index n l s ms

1 0 0 1/2 -1/2
2 0 0 1/2 1/2
3 1 0 1/2 -1/2
4 1 0 1/2 1/2
5 2 0 1/2 -1/2
6 2 0 1/2 1/2
7 3 0 1/2 -1/2
8 3 0 1/2 1/2

If we limit ourselves to four fermions only and states with no broken pairs,
total M = 0 states, we end with sixSlater determinants

• |1, 2, 3, 4〉,

• |1, 2, 5, 6〉,

• |1, 2, 7, 8〉,

• |3, 4, 5, 6〉,

• |3, 4, 7, 8〉,

• |5, 6, 7, 8〉

For our example, the 6× 6 Hamiltonian matrix becomes

H =


2δ − g −g/2 −g/2 −g/2 −g/2 0
−g/2 4δ − g −g/2 −g/2 −0 −g/2
−g/2 −g/2 6δ − g 0 −g/2 −g/2
−g/2 −g/2 0 6δ − g −g/2 −g/2
−g/2 0 −g/2 −g/2 8δ − g −g/2

0 −g/2 −g/2 −g/2 −g/2 10δ − g
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(You should check by hand that this is correct.)
For δ = 0 we have the closed form solution of the g.s. energy given by −6G.
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