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Isospin prelude to nuclear forces
The nuclear forces are almost charge independent. If we assume they are, we
can introduce a new quantum number which is conserved. For nucleons only,
that is a proton and neutron, we can limit ourselves to two possible values which
allow us to distinguish between the two particles. If we assign an isospin value
of τ = 1/2 for protons and neutrons (they belong to an isospin doublet, in the
same way as we discuss the spin 1/2 multiplet), we can define the neutron to
have isospin projection τz = +1/2 and a proton to have τz = −1/2. These
assignments are the standard choices in low-energy nuclear physics. In particle
physics, the opposite is the norm.

This leads to the introduction of an additional quantum number called isospin.
We can define a single-nucleon state function in terms of the quantum numbers
n, j, mj , l, s, τ and τz. Using our definitions in terms of an uncoupled basis, we
can define a single-particle state with the state function

ψnjmj ;ls =
∑
mlms

〈lmlsms|jmj〉φnlmlsms ,

which we can now extend to

ψnjmj ;lsξττz =
∑
mlms

〈lmlsms|jmj〉φnlmlsmsξττz ,

with the isospin spinors defined as

ξτ=1/2τz=+1/2 =
(

1
0

)
,

and
ξτ=1/2τz=−1/2 =

(
0
1

)
.
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We can then define the proton state function as

ψp(r) = ψnjmj ;ls(r)
(

0
1

)
,

and similarly for neutrons as

ψn(r) = ψnjmj ;ls(r)
(

1
0

)
.

We can in turn define the isospin Pauli matrices (in the same as we define
the spin matrices) as

τ̂x =
(

0 1
1 0

)
,

τ̂y =
(

0 −ı
ı 0

)
,

and
τ̂z =

(
1 0
0 −1

)
,

and operating with τ̂z on the proton state function we have

τ̂zψ
p(r) = −1

2ψ
p(r),

and for neutrons we have
τ̂ψn(r) = 1

2ψ
n(r).

We can now define the so-called charge operator as

Q̂

e
= 1

2 (1− τ̂z) =
{

0 0
0 1

}
,

which results in
Q̂

e
ψp(r) = ψp(r),

and
Q̂

e
ψn(r) = 0,

as it should be.
The total isospin is defined as

T̂ =
A∑
i=1

τ̂i,

and its corresponding isospin projection as

T̂z =
A∑
i=1

τ̂zi ,
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with eigenvalues T (T + 1) for T̂ and 1/2(N − Z) for T̂z, where N is the number
of neutrons and Z the number of protons.

If charge is conserved, the Hamiltonian Ĥ commutes with T̂z and all members
of a given isospin multiplet (that is the same value of T ) have the same energy
and there is no Tz dependence and we say that Ĥ is a scalar in isospin space.

Phenomenology of nuclear forces: From Yukawa to Lattice
QCD and Effective Field Theory
• Chadwick (1932) discovers the neutron and Heisenberg (1932) proposes

the first Phenomenology (Isospin).

• Yukawa (1935) and his Meson Hypothesis

• Discovery of the pion in cosmic ray (1947) and in the Berkeley Cyclotron
Lab (1948).

• Nobelprize awarded to Yukawa (1949). Rabi (1948) measures quadrupole
moment of the deuteron.

• Taketani, Nakamura, Sasaki (1951): 3 ranges. One-Pion-Exchange (OPE):
o.k.

• Multi-pion exchanges: Problems! Taketani, Machida, Onuma (1952);

• Pion Theories Brueckner, Watson (1953).

• Many pions = multi-pion resonances: σ(600), ρ(770), ω(782) etc. One-
Boson-Exchange Model.

• Refined Meson Theories

• Sophisticated models for two-pion exchange:

– Paris Potential (Lacombe et al., Phys. Rev. C 21, 861 (1980))
– Bonn potential (Machleidt et al., Phys. Rep. 149, 1 (1987))

*Quark cluster models. Begin of effective field theory studies.

• 1990’s

– 1993-2001: High-precision NN potentials: Nijmegen I, II, ’93, Reid93
(Stoks et al. 1994),

– Argonne V18 (Wiringa et al, 1995), CD-Bonn (Machleidt et al. 1996
and 2001.

– Advances in effective field theory: Weinberg (1990); Ordonez, Ray,
van Kolck and many more.

• 3rd Millenium
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– Another "pion theory"; but now right: constrained by chiral symmetry.
Three-body and higher-body forces appear naturally at a given order
of the chiral expansion.

Phenomenology of nuclear forces: Features of the Nucleon-Nucleon
(NN) Force. The aim is to give you an overview over central features of the
nucleon-nucleon interaction and how it is constructed, with both technical and
theoretical approaches.

• The existence of the deuteron with Jπ = 1+ indicates that the force
between protons and neutrons is attractive at least for the 3S1 partial wave.
Interference between Coulomb and nuclear scattering for the proton-proton
partial wave 1S0 shows that the NN force is attractive at least for the 1S0
partial wave.

• It has a short range and strong intermediate attraction.

• Spin dependent, scattering lengths for triplet and singlet states are different,

• Spin-orbit force. Observation of large polarizations of scattered nucleons
perpendicular to the plane of scattering.

• Strongly repulsive core. The s-wave phase shift becomes negative at ≈ 250
MeV implying that the singlet S has a hard core with range 0.4− 0.5 fm.

• Charge independence (almost). Two nucleons in a given two-body state
always (almost) experience the same force. Modern interactions break
charge and isospin symmetry lightly. That means that the pp, neutron-
neutron and pn parts of the interaction will be different for the same
quantum numbers.

• Non-central. There is a tensor force. First indications from the quadrupole
moment of the deuteron pointing to an admixture in the ground state of
both l = 2 (3D1) and l = 0 (3S1) orbital momenta.

Comparison of the binding energies of 2H (deuteron), 3H (triton), 4He (alpha -
particle) show that the nuclear force is of finite range (1− 2 fm) and very strong
within that range.

For nuclei with A > 4, the energy saturates: Volume and binding energies of
nuclei are proportional to the mass number A.

Nuclei are also bound. The average distance between nucleons in nuclei is
about 2 fm which must roughly correspond to the range of the attractive part.
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Phenomenology of nuclear forces: Charge Dependence.

• After correcting for the electromagnetic interaction, the forces between
nucleons (pp, nn, or np) in the same state are almost the same.

• Almost the same: Charge-independence is slightly broken.

• Equality between the pp and nn forces: Charge symmetry.

• Equality between pp/nn force and np force: Charge independence.

• Better notation: Isospin symmetry, invariance under rotations in isospin

Phenomenology of nuclear forces: Charge Dependence, 1S0 Scattering
Lengths. Charge-symmetry breaking (CSB), after electromagnetic effects have
been removed:

• app = −17.3± 0.4fm

• ann = −18.8±0.5fm. Note however discrepancy from nd breakup reactions
resulting in ann = −18.72± 0.13± 0.65fm and π− + d→ γ + 2n reactions
giving ann = −18.93± 0.27± 0.3fm.

Charge-independence breaking (CIB)

• apn = −23.74± 0.02fm

Symmetries of the Nucleon-Nucleon (NN) Force.

• Translation invariance

• Galilean invariance

• Rotation invariance in space

• Space reflection invariance

• Time reversal invariance

• Invariance under the interchange of particle 1 and 2

• Almost isospin symmetry
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A typical form of the nuclear force. Here we display a typical way to
parametrize (non-relativistic expression) the nuclear two-body force in terms of
some operators, the central part, the spin-spin part and the central force.

V (r) =
{
Cc + Cσσ1 · σ2 + CT

(
1 + 3

mαr
+ 3

(mαr)2

)
S12(r̂)

+CSL

(
1

mαr
+ 1

(mαr)2

)
L · S

}
e−mαr

mαr

How do we derive such terms? (Note: no isospin dependence and that the above
is an approximation)

To derive the above famous form of the nuclear force using field theoretical
concepts, we will need some elements from relativistic quantum mechanics. These
derivations will be given below. The material here gives some background to
this.

Baryons Mass (MeV) Mesons Mass (MeV)
p, n 938.926 π 138.03
Λ 1116.0 η 548.8
Σ 1197.3 σ ≈ 550.0
∆ 1232.0 ρ 770

ω 782.6
δ 983.0
K 495.8
K? 895.0

But before we proceed, we will look into specific quantum numbers of the relative
system and study expectation vaues of the various terms of

V (r) =
{
Cc + Cσσ1 · σ2 + CT

(
1 + 3

mαr
+ 3

(mαr)2

)
S12(r̂)

+CSL

(
1

mαr
+ 1

(mαr)2

)
L · S

}
e−mαr

mαr

When solving the scattering equation or solving the two-nucleon problem, it
is convenient to rewrite the Schroedinger equation, due to the spherical symmetry
of the Hamiltonian, in relative and center-of-mass coordinates. This will also
define the quantum numbers of the relative and center-of-mass system and
will aid us later in solving the so-called Lippman-Schwinger equation for the
scattering problem.

We define the center-of-mass (CoM) momentum as

K =
A∑
i=1

ki,
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with ~ = c = 1 the wave number ki = pi, with pi the pertinent momentum of a
single-particle state. We have also the relative momentum

kij = 1
2(ki − kj).

We will below skip the indices ij and simply write k
In a similar fashion we can define the CoM coordinate

R = 1
A

A∑
i=1

ri,

and the relative distance
rij = (ri − rj).

With the definitions

K =
A∑
i=1

ki,

and
kij = 1

2(ki − kj).

we can rewrite the two-particle kinetic energy (note that we use ~ = c = 1 as

k2
1

2mn
+ k2

2
2mn

= k2

mn
+ K2

4mn
,

where mn is the average of the proton and the neutron masses.
Since the two-nucleon interaction depends only on the relative distance, this

means that we can separate Schroedinger’s equation in an equation for the
center-of-mass motion and one for the relative motion.

With an equation for the relative motion only and a separate one for the
center-of-mass motion we need to redefine the two-body quantum numbers.

Previously we had a two-body state vector defined as |(j1j2)JMJ〉 in a
coupled basis. We will now define the quantum numbers for the relative motion.
Here we need to define new orbital momenta (since these are the quantum
numbers which change). We define

l̂1 + l̂2 = λ̂ = l̂ + L̂,

where l̂ is the orbital momentum associated with the relative motion and L̂ the
corresponding one linked with the CoM. The total spin S is unchanged since it
acts in a different space. We have thus that

Ĵ = l̂ + L̂+ Ŝ,

which allows us to define the angular momentum of the relative motion

J = l̂ + Ŝ,
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where J is the total angular momentum of the relative motion.
The total two-nucleon state function has to be anti-symmetric. The total

function contains a spatial part, a spin part and an isospin part. If isospin is
conserved, this leads to in case we have an s-wave with spin S = 0 to an isospin
two-body state with T = 1 since the spatial part is symmetric and the spin part
is anti-symmetric.

Since the projections for T are Tz = −1, 0, 1, we can have a pp, an nn and a
pn state.

For l = 0 and S = 1, a so-called triplet state, 3S1, we must have T = 0,
meaning that we have only one state, a pn state. For other partial waves, the
following table lists states up to f waves. We can systemize this in a table as
follows, recalling that |l− S| ≤ |J| ≤ |l + S|,

2S+1lJ J l S T |pp〉 |pn〉 |nn〉
1S0 0 0 0 1 yes yes yes
3S1 1 0 1 0 no yes no
3P0 0 1 1 1 yes yes yes
1P1 1 1 0 0 no yes no
3P1 1 1 1 1 yes yes yes
3P2 2 1 1 1 yes yes yes
3D1 1 2 1 0 no yes no
3F2 2 3 1 1 yes yes yes

The tensor force is given by

S12(r̂) = 3
r2 (σ1 · r) (σ2 · r)− σ1 · σ2

where the Pauli matrices are defined as

σx =
{

0 1
1 0

}
,

σy =
{

0 −ı
ı 0

}
,

and
σz =

{
1 0
0 −1

}
,

with the properties σ = 2S (the spin of the system, being 1/2 for nucleons),
σ2
x = σ2

y = σz = 1 and obeying the commutation and anti-commutation relations
{σx, σy} = 0 [σx, σy] = ıσz etc.

When we look at the expectation value of 〈σ1 · σ2〉, we can rewrite this
expression in terms of the spin S = s1 + s2, resulting in

〈σ1 · σ2〉 = 2(S2 − s2
1 − s2

2) = 2S(S + 1)− 3,

where we s1 = s2 = 1/2 leading to{
〈σ1 · σ2〉 = 1 if S = 1
〈σ1 · σ2〉 = −3 if S = 0
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Similarly, the expectation value of the spin-orbit term is

〈lS〉 = 1
2 (J(J + 1)− l(l + 1)− S(S + 1)) ,

which means that for s-waves with either S = 0 and thereby J = 0 or S = 1 and
J = 1, the expectation value for the spin-orbit force is zero. With the above
phenomenological model, the only contributions to the expectation value of the
potential energy for s-waves stem from the central and the spin-spin components
since the expectation value of the tensor force is also zero.

For s = 1/2 spin values only for two nucleons, the expectation value of the
tensor force operator is

l′

l J + 1 J J − 1

J + 1 − 2J(J+2)
2J+1 0 6

√
J(J+1)

2J+1

J 0 2 0

J − 1 6
√
J(J+1)

2J+1 0 − 2(2J+1)
2J+1

If we now add isospin to our simple V4 interaction model, we end up with 8
operators, popularly dubbed V8 interaction model. The explicit form reads

V (r) =
{
Cc + Cσσ1 · σ2 + CT

(
1 + 3

mαr
+ 3

(mαr)2

)
S12(r̂)

+CSL

(
1

mαr
+ 1

(mαr)2

)
L · S

}
e−mαr

mαr

+
{
Ccτ + Cστσ1 · σ2 + CTτ

(
1 + 3

mαr
+ 3

(mαr)2

)
S12(r̂)

+CSLτ

(
1

mαr
+ 1

(mαr)2

)
L · S

}
τ1 · τ2

e−mαr

mαr

References for Various Phenomenological Interactions. From 1950 till
approximately 2000: One-Boson-Exchange (OBE) models dominate. These are
models which typically include several low-mass mesons, that is with masses
below 1 GeV. Potentials which are based upon the standard non-relativistic
operator structure are called "Phenomenological Potentials" Some historically
important examples are

• Gammel-Thaler potential ( Phys. Rev. 107, 291, 1339 (1957) and the
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• Hamada-Johnston potential, Nucl. Phys. 34, 382 (1962)), both with a
hard core.

• Reid potential (Ann. Phys. (N.Y.) 50, 411 (1968)), soft core.

• Argonne V14 potential (Wiringa et al., Phys. Rev. C 29, 1207 (1984)) with
14 operators and the Argonne V18 potential (Wiringa et al., Phys. Rev. C
51, 38 (1995)), uses 18 operators

• A good historical reference: R. Machleidt, Adv. Nucl. Phys. 19, 189
(1989).

Now: models based on chiral perturbation theory. These are effective models
with nucleons and pions as degrees of freedom only. The other mesons which
appeared in standard one-boson model appear as multi-pion resonances.

The total two-nucleon state function has to be anti-symmetric. The total
function contains a spatial part, a spin part and an isospin part. If isospin is
conserved, this leads to in case we have an s-wave with spin S = 0 to an isospin
two-body state with T = 1 since the spatial part is symmetric and the spin part
is anti-symmetric.

Since the projections for T are Tz = −1, 0, 1, we can have a pp, an nn and a
pn state.

For l = 0 and S = 1, a so-called triplet state, 3S1, we must have T = 0,
meaning that we have only one state, a pn state. For other partial waves, see
exercises below.

The one-pion exchange contribution (see derivation below), can be written as

Vπ(r) = − f2
π

4πm2
π

τ1 · τ2
1
3

{
σ1 · σ2 +

(
1 + 3

mπr
+ 3

(mπr)2

)
S12(r̂)

}
e−mπr

mπr
.

Here the constant f2
π/4π ≈ 0.08 and the mass of the pion is mπ ≈ 140 MeV/c2.

Let us look closer at specific partial waves for which one-pion exchange is
applicable. If we have S = 0 and T = 0, the orbital momentum has to be an
odd number in order for the total anti-symmetry to be obeyed. For S = 0, the
tensor force component is zero, meaning that the only contribution is

Vπ(r) = 3f2
π

4πm2
π

e−mπr

mπr
,

since 〈σ1 · σ2〉 = −3, that is we obtain a repulsive contribution to partial waves
like 1P0.

Since S = 0 yields always a zero tensor force contribution, for the combination
of T = 1 and then even l values, we get an attractive contribution

Vπ(r) = − f2
π

4πm2
π

e−mπr

mπr
.
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With S = 1 and T = 0, l can only take even values in order to obey the
anti-symmetry requirements and we get

Vπ(r) = − f2
π

4πm2
π

(
1 + (1 + 3

mπr
+ 3

(mπr))2 )S12(r̂)
)
e−mπr

mπr
,

while for S = 1 and T = 1, l can only take odd values, resulting in a repulsive
contribution

Vπ(r) = 1
3

f2
π

4πm2
π

(
1 + (1 + 3

mπr
+ 3

(mπr)2 )S12(r̂)
)
e−mπr

mπr
.

The central part of one-pion exchange interaction, arising from the spin-spin
term, is thus attractive for s-waves and all even l values. For p-waves and all
other odd values it is repulsive. However, its overall strength is weak. This is
discussed further in one of exercises below.

Models for nuclear forces and derivation of non-relativistic
expressions
To describe the interaction between the various baryons and mesons of the
previous table we choose the following phenomenological lagrangians for spin
1/2 baryons

Lps = gpsΨγ5Ψφ(ps),

Ls = gsΨΨφ(s),

and
Lv = gvΨγµΨφ(v)

µ + gtΨσµνΨ
(
∂µφ

(v)
ν − ∂νφ(v)

µ

)
,

for pseudoscalar (ps), scalar (s) and vector (v) coupling, respectively. The factors
gv and gt are the vector and tensor coupling constants, respectively.

For spin 1/2 baryons, the fields Ψ are expanded in terms of the Dirac spinors
(positive energy solution shown here with uu = 1)

u(kσ) =
√
E(k) +m

2m

 χ

σk
E(k)+mχ

 ,

with χ the familiar Pauli spinor and E(k) =
√
m2 + |k|2. The positive energy

part of the field Ψ reads

Ψ(x) = 1
(2π)3/2

∑
kσ

u(kσ) exp−(ikx)akσ,

with a being a fermion annihilation operator.
Expanding the free Dirac spinors in terms of 1/m (m is here the mass of

the relevant baryon) results, to lowest order, in the familiar non-relativistic
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expressions for baryon-baryon potentials. The configuration space version of the
interaction can be approximated as

V (r) =
{
C0
C + C1

C + Cσσ1 · σ2 + CT

(
1 + 3

mαr
+ 3

(mαr)2

)
S12(r̂)

+CSL

(
1

mαr
+ 1

(mαr)2

)
L · S

}
exp−(mαr)

mαr
,

where mα is the mass of the relevant meson and S12 is the familiar tensor term.
We derive now the non-relativistic one-pion exchange interaction.
Here p1, p′1, p2, p′2 and k = p1 − p′1 denote four-momenta. The vertices are

given by the pseudovector Lagrangian

Lpv = fπ
mπ

ψγ5γµψ∂
µφπ.

From the Feynman diagram rules we can write the two-body interaction as

V pv = f2
π

m2
π

u(p′1)γ5γµ(p1 − p′1)µu(p1)u(p′2)γ5γν(p′2 − p2)νu(p2)
(p1 − p′1)2 −m2

π

.

The factors p1 − p′1 = p′2 − p2 are both the four-momentum of the exchanged
meson and come from the derivative of the meson field in the interaction La-
grangian. The Dirac spinors obey

γµp
µu(p) = mu(p)

u(p)γµpµ = mu(p).

Using these relations, together with {γ5, γµ} = 0, we find

u(p′1)γ5γµ(p1 − p′1)µu(p1) = mu(p′1)γ5u(p1) + u(p′1)γµp′µ1 γ5u(p1)
= 2mu(p′1)γ5u(p1)

and
u(p′2)γ5γµ(p′2 − p2)µ = −2mu(p′2)γ5u(p1).

We get

V pv = − f2
π

m2
π

4m2u(p′1)γ5u(p1)u(p′2)γ5u(p2)
(p1 − p′1)2 −m2

π

.

By inserting expressions for the Dirac spinors, we find

u(p′1)γ5u(p1) =
√

(E′1 +m)(E1 +m)
4m2

(
χ† − σ1·p1

E′
1+mχ

†
)( 0 1

1 0

)
×
(

χ
σ1·p1
E1+mχ

)
=
√

(E′1 +m)(E1 +m)
4m2

(
σ1 · p1

E1 +m
− σ1 · p′1
E′1 +m

)
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Similarly

u(p′2)γ5u(p2) =
√

(E′2 +m)(E2 +m)
4m2

(
σ2 · p2

E2 +m
− σ2 · p′2
E′2 +m

)
.

In the CM system we have p2 = −p1, p′2 = −p′1 and so E2 = E1, E′2 = E′1.
We can then write down the relativistic contribution to the NN potential in the
CM system:

V pv = − f2
π

m2
π

4m2 1
(p1 − p′1)2 −m2

π

(E1 +m)(E′1 +m)
4m2

×
(
σ1 · p1

E1 +m
− σ1 · p′1
E′1 +m

)(
σ2 · p1

E1 +m
− σ2 · p′1
E′1 +m

)
.

In the non-relativistic limit we have to lowest order

E1 =
√

p2
1 +m2 ≈ m ≈ E′1

and then (p1 − p′1)2 = −k2, so we get for the contribution to the NN potential

V pv = − f2
π

m2
π

4m2 1
k2 +m2

2m · 2m
4m2

σ1

2m · (p1 − p′1) σ2

2m · (p1 − p′1)

= − f2
π

m2
π

(σ1 · k)(σ2 · k)
k2 +m2

π

.

We have omitted exchange terms and the isospin term τ1 · τ2.
We have

V pv(k) = − f2
π

m2
π

(σ1 · k)(σ2 · k)
k2 +m2

π

.

In coordinate space we have

V pv(r) =
∫

d3k

(2π)3 e
ikrV pv(k)

resulting in

V pv(r) = − f2
π

m2
π

σ1 · ∇σ2 · ∇
∫

d3k

(2π)3 e
ikr 1

k2 +m2
π

.

We obtain
V pv(r) = − f2

π

m2
π

σ1 · ∇σ2 · ∇
e−mπr

r
.

Carrying out the differentation of

V pv(r) = − f2
π

m2
π

σ1 · ∇σ2 · ∇
e−mπr

r
.
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we arrive at the famous one-pion exchange potential with central and tensor
parts

V (r) = − f2
π

m2
π

{
Cσσ1 · σ2 + CT

(
1 + 3

mαr
+ 3

(mαr)2

)
S12(r̂)

}
exp−mπr

mπr
.

For the full potential add the exchange part and the τ1 · τ2 term as well. (Subtle
point: there is a divergence which gets cancelled by using cutoffs) This leads to
coefficients Cσ and CT which are fitted to data.

When we perform similar non-relativistic expansions for scalar and vector
mesons we obtain for the σ meson

V σ = g2
σNN

1
k2 +m2

σ

(
−1 + q2

2M2
N

− k2

8M2
N

− LS
2M2

N

)
.

We note an attractive central force and spin-orbit force. This term has an
intermediate range. We have defined 1/2(p1 + p′1) = q. For the full potential
add the exchange part and the isospin dependence as well.

We obtain for the ω meson

V ω = g2
ωNN

1
k2 +m2

ω

(
1− 3 LS

2M2
N

)
.

We note a repulsive central force and an attractive spin-orbit force. This term
has short range. For the full potential add the exchange part and the isospin
dependence as well.

Finally for the ρ meson

V ρ = g2
ρNN

k2

k2 +m2
ρ

(
−2σ1σ2 + S12(k̂)

)
τ1τ2.

We note a tensor force with sign opposite to that of the pion. This term has short
range. For the full potential add the exchange part and the isospin dependence
as well.

We have seen that:

• Can use a one-boson exchange picture to construct a nucleon-nucleon
interaction a la QED

• Non-relativistic approximation yields amongst other things a spin-orbit
force which is much stronger than in atoms.

• At large intermediate distances pion exchange dominates while pion reso-
nances (other mesons) dominate at intermediate and short range

– Potentials are parameterized to fit selected two-nucleon data, binding
energies and scattering phase shifts.

• Nowaydays, chiral perturbation theory gives an effective theory that allows
a systematic expansion in terms of contrallable parameters. Good basis
for many-body physics
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The Lippman-Schwinger equation for two-nucleon scatter-
ing
What follows now is a more technical discussion on how we can solve the two-
nucleon problem. This will lead us to the so-called Lippman-Schwinger equation
for the scattering problem and a rewrite of Schroedinger’s equation in relative
and center-of-mass coordinates.

Before we break down the Schroedinger equation into a partial wave decompo-
sition, we derive now the so-called Lippman-Schwinger equation. We will do this
in an operator form first. Thereafter, we rewrite it in terms of various quantum
numbers such as relative momenta, orbital momenta etc. The Schroedinger
equation in abstract vector representation is(

Ĥ0 + V̂
)
|ψn〉 = En|ψn〉.

In our case for the two-body problem Ĥ0 is just the kinetic energy. We rewrite
it as (

Ĥ0 − En
)
|ψn〉 = −V̂ |ψn〉.

We assume that the invers of
(
Ĥ0 − En

)
exists and rewrite this equation as

|ψn〉 = 1(
En − Ĥ0

) V̂ |ψn〉.
The equation

|ψn〉 = 1(
En − Ĥ0

) V̂ |ψn〉,
is normally solved in an iterative fashion. We assume first that

|ψn〉 = |φn〉,

where |φn〉 are the eigenfunctions of

Ĥ0|φn〉 = ωn|φn〉

the so-called unperturbed problem. In our case, these will simply be the kinetic
energies of the relative motion.

Inserting |φn〉 on the right-hand side of

|ψn〉 = 1
(En − Ĥ0)

V̂ |ψn〉,

yields
|ψn〉 = |φn〉+ 1(

En − Ĥ0

) V̂ |φn〉,
15



as our first iteration. Reinserting again gives

|ψn〉 = |φn〉+ 1(
En − Ĥ0

) V̂ |φn〉+ 1
(En − Ĥ0)

V̂
1(

En − Ĥ0

) V̂ |φn〉,
and continuing we obtain

|ψn〉 =
∞∑
i=0

[
1

(En − Ĥ0)
V̂

]i
|φn〉.

It is easy to see that

|ψn〉 =
∞∑
i=0

[
1

(En − Ĥ0)
V̂

]i
|φn〉,

can be rewritten as

|ψn〉 = |φn〉+
1

(En − Ĥ0)
V̂

(
1 + 1

(En − Ĥ0)
V̂ + 1

(En − Ĥ0)
V̂

1
(En − Ĥ0)

V̂ + . . .

]
|φn〉,

which we rewrite as

|ψn〉 = |φn〉+ 1
(En − Ĥ0)

V̂ |ψn〉.

In operator form we have thus

|ψn〉 = |φn〉+ 1
(En − Ĥ0)

V̂ |ψn〉.

We multiply from the left with V̂ and 〈φm| and obtain

〈φm|V̂ |ψn〉 = 〈φm|V̂ |φn〉+ 〈φm|V̂
1

(En − Ĥ0)
V̂ |ψn〉.

We define thereafter the so-called T -matrix as

〈φm|T̂ |φn〉 = 〈φm|V̂ |ψn〉.

We can rewrite our equation as

〈φm|T̂ |φn〉 = 〈φm|V̂ |φn〉+ 〈φm|V̂
1

(En − Ĥ0)
T̂ |φn〉.

The equation

〈φm|T̂ |φn〉 = 〈φm|V̂ |φn〉+ 〈φm|V̂
1

(En − Ĥ0)
T̂ |φn〉,
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is called the Lippman-Schwinger equation. Inserting the completeness relation

1 =
∑
n

|φn〉〈φn|, 〈φn|φn′〉 = δn,n′

we have

〈φm|T̂ |φn〉 = 〈φm|V̂ |φn〉+
∑
k

〈φm|V̂ |φk〉
1

(En − ωk) 〈φk|T̂ |φn〉,

which is (when we specify the state |φn〉) an integral equation that can actually
be solved by matrix inversion easily! The unknown quantity is the T -matrix.

Now we wish to introduce a partial wave decomposition in order to solve the
Lippman-Schwinger equation. With a partial wave decomposition we can reduce
a three-dimensional integral equation to a one-dimensional one.

Let us continue with our Schroedinger equation in the abstract vector repre-
sentation

(T + V ) |ψn〉 = En|ψn〉

Here T is the kinetic energy operator and V is the potential operator. The
eigenstates form a complete orthonormal set according to

1 =
∑
n

|ψn〉〈ψn|, 〈ψn|ψn′〉 = δn,n′

The most commonly used representations are the coordinate and the momen-
tum space representations. They define the completeness relations

1 =
∫
dr |r〉〈r|, 〈r|r′〉 = δ(r− r′)

1 =
∫
dk |k〉〈k|, 〈k|k′〉 = δ(k− k′)

Here the basis states in both r- and k-space are dirac-delta function normalized.
From this it follows that the plane-wave states are given by,

〈r|k〉 =
(

1
2π

)3/2
exp (ik · r)

which is a transformation function defining the mapping from the abstract |k〉
to the abstract |r〉 space.

That the r-space basis states are delta-function normalized follows from

δ(r− r′) = 〈r|r′〉 = 〈r|1|r′〉 =
∫
dk〈r|k〉〈k|r′〉 =

(
1

2π

)3 ∫
dkeik(r−r′)

and the same for the momentum space basis states,

δ(k− k′) = 〈k|k′〉 = 〈k|1|k′〉 =
∫
dr〈k|r〉〈r|k′〉 =

(
1

2π

)3 ∫
dreir(k−k′)
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Projecting on momentum states, we obtain the momentum space Schroedinger
equation as

~2

2µk
2ψn(k) +

∫
dk′V (k,k′)ψn(k′) = Enψn(k) (1)

Here the notation ψn(k) = 〈k|ψn〉 and 〈k|V |k′〉 = V (k,k′) has been introduced.
The potential in momentum space is given by a double Fourier-transform of the
potential in coordinate space, i.e.

V (k,k′) =
(

1
2π

)3 ∫
dr
∫
dr′ exp−ikrV (r, r′) exp ik′r′

Here it is assumed that the potential interaction does not contain any spin de-
pendence. Instead of a differential equation in coordinate space, the Schroedinger
equation becomes an integral equation in momentum space. This has many
tractable features. Firstly, most realistic nucleon-nucleon interactions derived
from field-theory are given explicitly in momentum space. Secondly, the bound-
ary conditions imposed on the differential equation in coordinate space are
automatically built into the integral equation. And last, but not least, integral
equations are easy to numerically implement, and convergence is obtained by
just increasing the number of integration points. Instead of solving the three-
dimensional integral equation, an infinite set of 1-dimensional equations can be
obtained via a partial wave expansion.

The wave function ψn(k) can be expanded in a complete set of spherical
harmonics, that is

ψn(k) =
∑
lm

ψnlm(k)Ylm(k̂) ψnlm(k) =
∫
dk̂Y ∗lm(k̂)ψn(k)., (2)

By inserting equation (2) in equation (1), and projecting from the left Ylm(k̂),
the three-dimensional Schroedinger Eq. (1) is reduced to an infinite set of
1-dimensional angular momentum coupled integral equations,(

~2

2µk
2 − Enlm

)
ψnlm(k) = −

∑
l′m′

∫ ∞
0

dk′k′
2
Vlm,l′m′(k, k′)ψnl′m′(k′) (3)

where the angular momentum projected potential takes the form,

Vlm,l′m′(k, k′) =
∫
dk̂

∫
dk̂′Y ∗lm(k̂)V (kk′)Yl′m′(k̂′) (4)

here dk̂ = dθ sin(θ)dϕ. Note that we discuss only the orbital momentum, we will
include angular momentum and spin later.

The potential is often given in position space. It is then convenient to
establish the connection between Vlm,l′m′(k, k′) and Vlm,l′m′(r, r′). Inserting the
completeness relation for the position quantum numbers in equation (4) results
in

V =
∫
dr
∫
dr′
{∫

dk̂Y ∗lm(k̂)〈k|r〉
}
〈r|V |r′〉

{∫
dk̂′Ylm(k̂′)〈r′|k′〉

}
(5)
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Since the plane waves depend only on the absolute values of position and
momentum, |k| and |r|, and the angle between them, θkr, they may be expanded
in terms of bipolar harmonics of zero rank, i.e.

exp (ik · r) = 4π
∞∑
l=0

iljl(kr)
(
Yl(k̂) · Yl(r̂)

)
=
∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θkr)

where the addition theorem for spherical harmonics has been used in order to
write the expansion in terms of Legendre polynomials. The spherical Bessel
functions, jl(z), are given in terms of Bessel functions of the first kind with half
integer orders,

jl(z) =
√

π

2z Jl+1/2(z).

Inserting the plane-wave expansion into the brackets of Eq. (5) yields,∫
dk̂Y ∗lm(k̂)〈k|r〉 =

(
1

2π

)3/2
4πi−ljl(kr)Y ∗lm(r̂),∫

dk̂′ Ylm(k̂′)〈r′|k′〉 =
(

1
2π

)3/2
4πil

′
jl′(k′r′)Yl′m′(r̂).

The connection between the momentum- and position space angular momen-
tum projected potentials are then given,

Vlm,l′m′(k, k′) = 2
π
il

′−l
∫ ∞

0
drr2

∫ ∞
0

dr′r′
2
jl(kr)Vlm,l′m′(r, r′)jl′(k′r′)

which is known as a double Fourier-Bessel transform. The position space angular
momentum projected potential is given by

Vlm,l′m′(r, r′) =
∫
dr̂

∫
dr̂′Y ∗lm(r̂)V (r, r′)Yl′m′(r̂′).

No assumptions of locality/non-locality and deformation of the interaction
has so far been made, and the result in Eq. () is general. In position space
the Schroedinger equation takes form of an integro-differential equation in case
of a non-local interaction, in momentum space the Schroedinger equation is
an ordinary integral equation of the Fredholm type, see Eq. (3). This is a
further advantage of the momentum space approach as compared to the standard
position space approach. If we assume that the interaction is of local character,
i.e.

〈r|V |r′〉 = V (r)δ(r− r′) = V (r)δ(r − r
′)

r2 δ(cos θ − cos θ′)δ(ϕ− ϕ′),

then Eq. () reduces to

Vlm,l′m′(r, r′) = δ(r − r′)
r2

∫
dr̂ Y ∗lm(r̂)V (r)Yl′m′(r̂), (6)
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and Eq. () reduces to

Vlm,l′m′(k, k′) = 2
π
il

′−l
∫ ∞

0
drr2jl(kr)Vlm,l′m′(r)jl′(k′r) (7)

where
Vlm,l′m′(r) =

∫
dr̂Y ∗lm(r̂)V (r)Yl′m′(r̂), (8)

In the case that the interaction is central, V (r) = V (r), then

Vlm,l′m′(r) = V (r)
∫
dr̂Y ∗lm(r̂)Yl′m′(r̂) = V (r)δl,l′δm,m′ , (9)

and

Vlm,l′m′(k, k′) = 2
π

∫ ∞
0

drr2jl(kr)V (r)jl′(k′r)δl,l′δm,m′ = Vl(k, k′)δl,l′δm,m′

(10)
where the momentum space representation of the interaction finally reads,

Vl(k, k′) = 2
π

∫ ∞
0

dr r2 jl(kr)V (r)jl(k′r). (11)

For a local and spherical symmetric potential, the coupled momentum space
Schroedinger equations given in Eq. (3) decouples in angular momentum, giving

~2

2µk
2ψnl(k) +

∫ ∞
0

dk′k′
2
Vl(k, k′)ψnl(k′) = Enlψnl(k) (12)

Where we have written ψnl(k) = ψnlm(k), since the equation becomes indepen-
dent of the projection m for spherical symmetric interactions. The momentum
space wave functions ψnl(k) defines a complete orthogonal set of functions, which
spans the space of functions with a positive finite Euclidean norm (also called
l2-norm),

√
〈ψn|ψn〉, which is a Hilbert space. The corresponding normalized

wave function in coordinate space is given by the Fourier-Bessel transform

φnl(r) =
√

2
π

∫
dkk2jl(kr)ψnl(k)

We will thus assume that the interaction is spherically symmetric and use
the partial wave expansion of the plane waves in terms of spherical harmonics.
This means that we can separate the radial part of the wave function from its
angular dependence. The wave function of the relative motion is described in
terms of plane waves as

exp (ıkr) = 〈r|k〉 = 4π
∑
lm

ıljl(kr)Y ∗lm(k̂)Ylm(r̂),

where jl is a spherical Bessel function and Ylm the spherical harmonics.
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In terms of the relative and center-of-mass momenta k and K, the potential
in momentum space is related to the nonlocal operator V (r, r′) by

〈k′K′|V |kK〉 =
∫
drdr′ exp−(ık′r′)V (r′, r) exp ıkrδ(K,K′).

We will assume that the interaction is spherically symmetric. Can separate the
radial part of the wave function from its angular dependence. The wave function
of the relative motion is described in terms of plane waves as

exp (ıkr) = 〈r|k〉 = 4π
∑
lm

ıljl(kr)Y ∗lm(k̂)Ylm(r̂),

where jl is a spherical Bessel function and Ylm the spherical harmonic.
This partial wave basis is useful for defining the operator for the nucleon-

nucleon interaction, which is symmetric with respect to rotations, parity and
isospin transformations. These symmetries imply that the interaction is diagonal
with respect to the quantum numbers of total relative angular momentum J ,
spin S and isospin T (we skip isospin for the moment). Using the above plane
wave expansion, and coupling to final J and S and T we get

〈k′|V |k〉 = (4π)2
∑

STll′mlml′J

ıl+l
′
Y ∗lm(k̂)Yl′m′(k̂′)

〈lmlSmS |JM〉〈l′ml′SmS |JM〉〈k′l′SJM |V |klSJM〉,

where we have defined

〈k′l′SJM |V |klSJM〉 =
∫
jl′(k′r′)〈l′SJM |V (r′, r)|lSJM〉jl(kr)r′

2
dr′r2dr.

We have omitted the momentum of the center-of-mass motion K and the cor-
responding orbital momentum L, since the interaction is diagonal in these
variables.

We wrote the Lippman-Schwinger equation as

〈φm|T̂ |φn〉 = 〈φm|V̂ |φn〉+
∑
k

〈φm|V̂ |φk〉
1

(En − ωk) 〈φk|T̂ |φn〉.

How do we rewrite it in a partial wave expansion with momenta k?
The general structure of the T -matrix in partial waves is

Tαll′(kk′Kω) = V αll′(kk′)

+ 2
π

∑
l′′ml′′MS

∫ ∞
0

dq(〈l′′ml′′SmS |JM〉)2Y
∗
l′′ml′′ (q̂)Yl′′ml′′ (q̂)V αll′′(kq)Tαl′′l′(qk′Kω)

ω −H0
,

(13)
The shorthand notation

Tαll′(kk′Kω) = 〈kKlLJ S|T (ω)|k′Kl′LJ S〉,
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denotes the T -matrix with momenta k and k′ and orbital momenta l and l′ of
the relative motion, and K is the corresponding momentum of the center-of-mass
motion. Further, L, J , S and T are the orbital momentum of the center-of-mass
motion, the total angular momentum, spin and isospin, respectively. Due to the
nuclear tensor force, the interaction is not diagonal in ll′.

Using the orthogonality properties of the Clebsch-Gordan coefficients and the
spherical harmonics, we obtain the well-known one-dimensional angle independent
integral equation

Tαll′(kk′Kω) = V αll′(kk′) + 2
π

∑
l′′

∫ ∞
0

dqq2V
α
ll′′(kq)Tαl′′l′(qk′Kω)

ω −H0
.

Inserting the denominator we arrive at

T̂αll′(kk′K) = V̂ αll′(kk′) + 2
π

∑
l′′

∫ ∞
0

dqq2V̂ αll′′(kq)
1

k2 − q2 + iε
T̂αl′′l′(qk′K).

To parameterize the nucleon-nucleon interaction we solve the Lippman-Scwhinger
equation

Tαll′(kk′K) = V αll′(kk′) + 2
π

∑
l′′

∫ ∞
0

dqq2V αll′′(kq)
1

k2 − q2 + iε
Tαl′′l′(qk′K).

The shorthand notation

T (V̂ )αll′(kk′Kω) = 〈kKlLJ S|T (ω)|k′Kl′LJ S〉,

denotes the T (V )-matrix with momenta k and k′ and orbital momenta l and l′ of
the relative motion, and K is the corresponding momentum of the center-of-mass
motion. Further, L, J , and S are the orbital momentum of the center-of-mass
motion, the total angular momentum and spin, respectively. We skip for the
moment isospin.

For scattering states, the energy is positive, E > 0. The Lippman-Schwinger
equation (a rewrite of the Schroedinger equation) is an integral equation where
we have to deal with the amplitude R(k, k′) (reaction matrix, which is the real
part of the full complex T -matrix) defined through the integral equation for one
partial wave (no coupled-channels)

Rl(k, k′) = Vl(k, k′) + 2
π
P
∫ ∞

0
dqq2Vl(k, q)

1
E − q2/m

Rl(q, k′). (14)

For negative energies (bound states) and intermediate states scattering states
blocked by occupied states below the Fermi level.

The symbol P in the previous slide indicates that Cauchy’s principal-value
prescription is used in order to avoid the singularity arising from the zero of the
denominator.

The total kinetic energy of the two incoming particles in the center-of-mass
system is

E = k2
0

mn
.
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The matrix Rl(k, k′) relates to the the phase shifts through its diagonal
elements as

Rl(k0, k0) = − tanδl
mk0

. (15)

From now on we will drop the subscript l in all equations. In order to solve
the Lippman-Schwinger equation in momentum space, we need first to write a
function which sets up the mesh points. We need to do that since we are going
to approximate an integral through∫ b

a

f(x)dx ≈
N∑
i=1

wif(xi),

where we have fixed N lattice points through the corresponding weights wi and
points xi. Typically obtained via methods like Gaussian quadrature.

If you use Gauss-Legendre the points are determined for the interval xi ∈
[−1, 1] You map these points over to the limits in your integral. You can then
use the following mapping

ki = const× tan
{π

4 (1 + xi)
}
,

and
ωi = const

π

4
wi

cos2
(
π
4 (1 + xi)

) .
If you choose units fm−1 for k, set const = 1. If you choose to work with MeV,
set const ∼ 200 (~c = 197 MeVfm).

The principal value integral is rather tricky to evaluate numerically, mainly
since computers have limited precision. We will here use a subtraction trick
often used when dealing with singular integrals in numerical calculations. We
introduce first the calculus relation∫ ∞

−∞

dk

k − k0
= 0.

It means that the curve 1/(k − k0) has equal and opposite areas on both sides
of the singular point k0. If we break the integral into one over positive k and
one over negative k, a change of variable k → −k allows us to rewrite the last
equation as ∫ ∞

0

dk

k2 − k2
0

= 0.

We can then express a principal values integral as

P
∫ ∞

0

f(k)dk
k2 − k2

0
=
∫ ∞

0

(f(k)− f(k0))dk
k2 − k2

0
, (16)

where the right-hand side is no longer singular at k = k0, it is proportional to
the derivative df/dk, and can be evaluated numerically as any other integral.

23



We can then use this trick to obtain

R(k, k′) = V (k, k′) + 2
π

∫ ∞
0

dq
q2V (k, q)R(q, k′)− k2

0V (k, k0)R(k0, k
′)

(k2
0 − q2)/m . (17)

This is the equation to solve numerically in order to calculate the phase shifts.
We are interested in obtaining R(k0, k0).

How do we proceed?
Using the mesh points kj and the weights ωj , we reach

R(k, k′) = V (k, k′)+ 2
π

N∑
j=1

ωjk
2
jV (k, kj)R(kj , k′)
(k2

0 − k2
j )/m − 2

π
k2

0V (k, k0)R(k0, k
′)

N∑
n=1

ωn
(k2

0 − k2
n)/m.

This equation contains now the unknowns R(ki, kj) (with dimension N ×N)
and R(k0, k0).

We can turn it into an equation with dimension (N + 1)× (N + 1) with a
mesh which contains the original mesh points kj for j = 1, N and the point
which corresponds to the energy k0. Consider the latter as the ’observable’ point.
The mesh points become then kj for j = 1, n and kN+1 = k0.

With these new mesh points we define the matrix

Ai,j = δi,j − V (ki, kj)uj , (18)

where δ is the Kronecker δ and

uj = 2
π

ωjk
2
j

(k2
0 − k2

j )/m j = 1, N

and

uN+1 = − 2
π

N∑
j=1

k2
0ωj

(k2
0 − k2

j )/m.

The first task is then to set up the matrix A for a given k0. This is an
(N + 1) × (N + 1) matrix. It can be convenient to have an outer loop which
runs over the chosen observable values for the energy k2

0/m. Note that all mesh
points kj for j = 1, N must be different from k0. Note also that V (ki, kj) is an
(N + 1)× (N + 1) matrix.

With the matrix A we can rewrite the problem as a matrix problem of
dimension (N + 1)× (N + 1). All matrices R, A and V have this dimension and
we get

Ai,lRl,j = Vi,j ,

or just
AR = V.

Since you already have defined A and V (these are stored as (N +1)× (N +1)
matrices) The final equation involves only the unknown R. We obtain it by
matrix inversion, i.e.,

R = A−1V. (19)
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Thus, to obtain R, you will need to set up the matrices A and V and invert the
matrix A. With the inverse A−1, perform a matrix multiplication with V results
in R.

With R you can then evaluate the phase shifts by noting that

R(kN+1, kN+1) = R(k0, k0) = − tanδ
mk0

,

where δ are the phase shifts.
For elastic scattering, the scattering potential can only change the outgoing

spherical wave function up to a phase. In the asymptotic limit, far away from
the scattering potential, we get for the spherical bessel function

jl(kr)
r�1−−−→ sin(kr − lπ/2)

kr
= 1

2ik

(
ei(kr−lπ/2)

r
− e−i(kr−lπ/2)

r

)
The outgoing wave will change by a phase shift δl, from which we can define the
S-matrix Sl(k) = e2iδl(k). Thus, we have

ei(kr−lπ/2)

r

phasechange−−−−−−−−→ Sl(k)ei(kr−lπ/2)

r

The solution to the Schrodinger equation for a spherically symmetric potential,
will have the form

ψk(r) = eikr + f(θ)e
ikr

r

where f(θ) is the scattering amplitude, and related to the differential cross
section as

dσ

dΩ = |f(θ)|2

Using the expansion of a plane wave in spherical waves, we can relate the
scattering amplitude f(θ) with the partial wave phase shifts δl by identifying
the outgoing wave

ψk(r) = eikr +
[

1
2ik

∑
l

il(2l + 1)(Sl(k)− 1)Pl(cos(θ))e−ilπ/2
]
eikr

r

which can be simplified further by cancelling il with e−ilπ/2
We have

ψk(r) = eikr + f(θ)e
ikr

r

with
f(θ) =

∑
l

(2l + 1)fl(θ)Pl(cos(θ))

where the partial wave scattering amplitude is given by

fl(θ) = 1
k

(Sl(k)− 1)
2i = 1

k
sin δl(k)eiδl(k)
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Figure 1: Examples of negative and positive phase shifts for repulsive and
attractive potentials, respectively.

With Eulers formula for the cotangent, this can also be written as

fl(θ) = 1
k

1
cot δl(k)− i .

The integrated cross section is given by

σ = 2π
∫ π

0
|f(θ)|2 sin θdθ

= 2π
∑
l

| (2l + 1)
k

sin(δl)|2
∫ π

0
(Pl(cos(θ)))2 sin(θ)dθ

= 4π
k2

∑
l

(2l + 1) sin2 δl(k) = 4π
∑
l

(2l + 1)|fl(θ)|2,

where the orthogonality of the Legendre polynomials was used to evaluate the
last integral ∫ π

0
Pl(cos θ)2 sin θdθ = 2

2l + 1 .

Thus, the total cross section is the sum of the partial-wave cross sections. Note
that the differential cross section contains cross-terms from different partial waves.
The integral over the full sphere enables the use of the legendre orthogonality,
and this kills the cross-terms.

At low energy, k → 0, S-waves are most important. In this region we can
define the scattering length a and the effective range r. The S−wave scattering
amplitude is given by

fl(θ) = 1
k

1
cot δl(k)− i .

Taking the limit k → 0, gives us the expansion

k cot δ0 = −1
a

+ 1
2r0k

2 + . . .

Thus the low energy cross section is given by

σ = 4πa2.
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Figure 2: Examples of scattering lengths.

If the system contains a bound state, the scattering length will become positive
(neutron-proton in 3S1). For the 1S0 wave, the scattering length is negative and
large. This indicates that the wave function of the system is at the verge of
turning over to get a node, but cannot create a bound state in this wave.

It is important to realize that the phase shifts themselves are not observables.
The measurable scattering quantity is the cross section, or the differential cross
section. The partial wave phase shifts can be thought of as a parameterization
of the (experimental) cross sections. The phase shifts provide insights into the
physics of partial wave projected nuclear interactions, and are thus important
quantities to know.

The nucleon-nucleon differential cross section have been measured at almost
all energies up to the pion production threshold (290 MeV in the Lab frame),
and this experimental data base is what provides us with the constraints on
our nuclear interaction models. In order to pin down the unknown coupling
constants of the theory, a statistical optimization with respect to cross sections
need to be carried out. This is how we constrain the nucleon-nucleon interaction
in practice!

The pp-data is more accurate than the np-data, and for nn there is no
data. The quality of a potential is gauged by the χ2/datum with respect to the
scattering data base

The Lippman-Schwinger equation for two-nucleon scattering: Nijmegen
multi-energy pp PWA phase shifts.

Tlab bin (MeV) N3LO1 NNLO2 NLO2 AV183

0-100 1.05 1.7 4.5 0.95
100-190 1.08 22 100 1.10
190-290 1.15 47 180 1.11
0− 290 1.10 20 86 1.04

• R. Machleidt et al., Phys. Rev. C68, 041001(R) (2003)
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Figure 3: Nijmegen phase shifts for selected partial waves.

• E. Epelbaum et al., Eur. Phys. J. A19, 401 (2004)

• R. B. Wiringa et al., Phys. Rev. C5, 38 (1995)

The Lippman-Schwinger equation for two-nucleon scattering: An ex-
ample: chiral twobody interactions.

Leff = Lππ(fπ,mπ) + LπN (fπ,MN , gA, ci, di, ...) + LNN (Ci, C̃i, Di, ...) + . . .

• R. Machleidt, D. R. Entem, Phys. Rep. 503, 1 (2011)

• E. Epelbaum, H.-W. Hammer, Ulf-G. Meißner, Rev. Mod. Phys. 81, 1773
(2009)

Note that the Nijm93 PWA phase shift becomes negative at Tlab > 250MeV.
This indicates that the nucleon-nucleon potential is repulsive at short distances

Exercise 1: List all partial waves up to a given orbital mo-
mentum
a) List all allowed according to the Pauli principle partial waves with isospin
T , their projection Tz, spin S, orbital angular momentum l and total spin J for
J ≤ 3. Use the standard spectroscopic notation 2S+1LJ to label different partial
waves. A proton-proton state has TZ = −1, a proton-neutron state has Tz = 0
and a neutron-neutron state has Tz = 1.
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Exercise 2: Expressions for various components
a) Find the closed form expression for the spin-orbit force. Show that the spin-
orbit force LS gives a zero contribution for S-waves (orbital angular momentum
l = 0). What is the value of the spin-orbit force for spin-singlet states (S = 0)?

b) Find thereafter the expectation value of σ1 · σ2, where σi are so-called Pauli
matrices.

c) Add thereafter isospin and find the expectation value of σ1 · σ2τ1 · τ2, where
τi are also so-called Pauli matrices. List all the cases with S = 0, 1 and T = 0, 1.
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Exercise 3: Analysis of the opne-pion exchange component
of the force
A simple parametrization of the nucleon-nucleon force is given by what is called
the V8 potential model, where we have kept eight different operators. These
operators contain a central force, a spin-orbit force, a spin-spin force and a
tensor force. Several features of the nuclei can be explained in terms of these
four components. Without the Pauli matrices for isospin the final form of such
an interaction model results in the following form:

V (r) =
{
Cc + Cσσ1 · σ2 + CT

(
1 + 3

mαr
+ 3

(mαr)2

)
S12(r̂)

+CSL

(
1

mαr
+ 1

(mαr)2

)
L · S

}
e−mαr

mαr

where mα is the mass of the relevant meson and S12 is the familiar tensor term.
The various coefficients Ci are normally fitted so that the potential reproduces
experimental scattering cross sections. By adding terms which include the isospin
Pauli matrices results in an interaction model with eight operators.

The expectaction value of the tensor operator is non-zero only for S = 1. We
will show this in a forthcoming lecture, after that we have derived the Wigner-
Eckart theorem. Here it suffices to know that the expectaction value of the
tensor force for different partial values is (with l the orbital angular momentum
and J the total angular momentum in the relative and center-of-mass frame of
motion)

〈lJ S = 1|S12|l′J S = 1〉 = −2J (J + 2)
2J + 1 l = J + 1 and l′ = J + 1,

〈lJ S = 1|S12|l′J S = 1〉 =
6
√
J (J + 1)
2J + 1 l = J + 1 and l′ = J − 1,

〈lJ S = 1|S12|l′J S = 1〉 =
6
√
J (J + 1)
2J + 1 l = J − 1 and l′ = J + 1,

〈lJ S = 1|S12|l′J S = 1〉 = −2(J − 1)
2J + 1 l = J − 1 and l′ = J − 1,

〈lJ S = 1|S12|l′J S = 1〉 = 2 l = J and l′ = J ,

and zero else.
In this exercise we will focus only on the one-pion exchange term of the

nuclear force, namely

Vπ(r) = − f2
π

4πm2
π

τ1 · τ2
1
3

{
σ1 · σ2 +

(
1 + 3

mπr
+ 3

(mπr)2

)
S12(r̂)

}
e−mπr

mπr
.

Here the constant f2
π/4π ≈ 0.08 and the mass of the pion is mπ ≈ 140 MeV/c2.
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a) Compute the expectation value of the tensor force and the spin-spin and
isospin operators for the one-pion exchange potential for all partial waves you
found previously. Comment your results. How does the one-pion exchange part
behave as function of different l, J and S values? Do you see some patterns?

b) For the binding energy of the deuteron, with the ground state defined by the
quantum numbers l = 0, S = 1 and J = 1, the tensor force plays an important
role due to the admixture from the l = 2 state. Use the expectation values of the
different operators of the one-pion exchange potential and plot the ratio of the
tensor force component over the spin-spin component of the one-pion exchange
part as function of x = mπr for the l = 2 state (that is the case l, l′ = J + 1).
Comment your results.

Exercise 4: Program for the Lippman-Schwinger equation
The aim here is to develop a program which solves the Lippman-Schwinger
equation for a simple parametrization for the 1S0 partial wave. This partial
wave is given by a central force only and is parametrized in coordinate space as

V (r) = Va
e−ax

x
+ Vb

e−bx

x
+ Vc

e−cx

x

with x = µr, µ = 0.7 fm (the inverse of the pion mass), Va = −10.463 MeV and
a = 1, Vb = −1650.6 MeV and b = 4 and Vc = 6484.3 MeV and c = 7.

a) Find an analytical expression for the Fourier-Bessel transform (Hankel trans-
form) to momentum space for l = 0 using

〈k|Vl |k′〉 =
∫
jl(kr)V (r)jl(k′r)r2dr.

b) Write a small program which calculates the latter expression and use this
potential to compute the T -matrix at positive energies for l = 0. Compare your
results to those obtained with a box potential given by

V (r) =
{
−V0 r < R0

0 r > R0

Make a plot of the two T -matrices for energies up to 300 MeV in the lab frame
and comment your results.

Finally, a warning, the above central potential is fitted to data from approxi-
mately 20 MeV to some 300 MeV. This means that results outside the data set
should be taken seriously.

Solution. The following Fortran 95 program solves the above Lippmann-
Schwinger equation. Python and C++ codes will be added later. Discussions of
the results will also be added.
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C *******************************************************
C Example program used to evaluate the
C T-matrix following Kowalski’s method (eqs V88 & V89
C in Brown and Jackson)
C for positive energies only
C The program is set up for S-waves only
C Coded by : Morten Hjorth-Jensen
C Language : FORTRAN 90
C *******************************************************

C ******************************
C Def of global variables
C ******************************

MODULE constants
DOUBLE PRECISION , PUBLIC :: p_mass, hbarc
PARAMETER (p_mass =938.926D0, hbarc = 197.327D0)

END MODULE constants

MODULE mesh_variables
INTEGER, PUBLIC :: n_rel
PARAMETER(n_rel=48)
DOUBLE PRECISION, ALLOCATABLE, PUBLIC :: ra(:), wra(:)

END MODULE mesh_variables

C ******************************
C Begin of main program
C ******************************

PROGRAM t_matrix
USE mesh_variables
IMPLICIT NONE
INTEGER istat

ALLOCATE( ra (n_rel), wra (n_rel), STAT=istat )
CALL rel_mesh ! rel mesh & weights
CALL t_channel ! calculate the T-matrix
DEALLOCATE( ra,wra, STAT=istat )

END PROGRAM t_matrix

C *********************************************************
C obtain the t-mtx
C vkk is the box potential
C f_mtx is equation V88 og Brown & Jackson
C *********************************************************

SUBROUTINE t_channel
USE mesh_variables
IMPLICIT NONE
INTEGER istat, i,j
DIMENSION vkk(:,:),f_mtx(:),t_mtx(:)
DOUBLE PRECISION, ALLOCATABLE :: vkk,t_mtx,f_mtx
DOUBLE PRECISION t_shell

ALLOCATE(vkk (n_rel,n_rel), STAT=istat)
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CALL v_pot_yukawa(vkk) ! set up the box potential in routine vpot
ALLOCATE(t_mtx (n_rel), STAT=istat) ! allocate space in heap for T
ALLOCATE(f_mtx (n_rel), STAT=istat) ! allocate space for f
DO i=1,n_rel ! loop over positive energies e=k^2

CALL f_mtx_eq(f_mtx,vkk,i) ! solve eq. V88
CALL principal_value(vkk,f_mtx,i,t_shell) ! solve Eq. V89
DO j=1,n_rel ! the t-matrix

t_mtx(j)=f_mtx(j)*t_shell
IF(j == i) WRITE(6,*) ra(i) ,t_mtx(i)

c & DATAN(-ra(i)*t_mtx(i))
ENDDO

ENDDO
DEALLOCATE(vkk , STAT=istat)
DEALLOCATE(t_mtx, f_mtx, STAT=istat)

1000 FORMAT( I3, 2F12.6)

END SUBROUTINE t_channel

C ***********************************************************
C The analytical expression for the box potential
C of exercise 1 and 12
C vkk is in units of fm^-2 (14 MeV/41.47Mevfm^2, where
C 41.47= \hbarc^2/mass_nucleon),
C ra are mesh points in rel coordinates, units of fm^-1
C ***********************************************************

SUBROUTINE v_pot_box(vkk)
USE mesh_variables
USE constants
IMPLICIT NONE
INTEGER i,j
DOUBLE PRECISION vkk, r_0, v_0, a, b, fac
PARAMETER(r_0=2.7d0,v_0=0.33759d0) !r_0 in fm, v_0 in fm^-2
DIMENSION vkk(n_rel,n_rel)

DO i=1,n_rel ! set up the free potential
DO j=1,i-1

a=ra(i)+ra(j)
b=ra(i)-ra(j)
fac=v_0/(2.d0*ra(i)*ra(j))
vkk(j,i)=fac*(DSIN(a*r_0)/a-DSIN(b*r_0)/b)
vkk(i,j)=vkk(j,i)

ENDDO
fac=v_0/(2.d0*(ra(i)**2))
vkk(i,i)=fac*(DSIN(2.d0*ra(i)*r_0)/(2.d0*ra(i))-r_0)

ENDDO

END SUBROUTINE v_pot_box

C ***********************************************************
C The analytical expression for a Yukawa potential
C in the l=0 channel
C vkk is in units of fm^-2,
C ra are mesh points in rel coordinates, units of fm^-1
C The parameters here are those of the Reid-Soft core
C potential, see Brown and Jackson eq. A(4)
C ***********************************************************

SUBROUTINE v_pot_yukawa(vkk)
USE mesh_variables
USE constants
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IMPLICIT NONE
INTEGER i,j
DOUBLE PRECISION vkk, mu1, mu2, mu3, v_1, v_2, v_3, a, b, fac
PARAMETER(mu1=0.49d0,v_1=-0.252d0)
PARAMETER(mu2=7.84d0,v_2=-39.802d0)
PARAMETER(mu3=24.01d0,v_3=156.359d0)
DIMENSION vkk(n_rel,n_rel)

DO i=1,n_rel ! set up the free potential
DO j=1,i

a=(ra(j)+ra(i))**2
b=(ra(j)-ra(i))**2
fac=1./(4.d0*ra(i)*ra(j))
vkk(j,i)=v_1*fac*DLOG((a+mu1)/(b+mu1))+

& v_2*fac*DLOG((a+mu2)/(b+mu2))+
& v_3*fac*DLOG((a+mu3)/(b+mu3))

vkk(i,j)=vkk(j,i)
ENDDO

ENDDO

END SUBROUTINE v_pot_yukawa

C **************************************************
C Solves eq. V88
C and returns < p | f_mtx | n_pole =k>
C **************************************************

SUBROUTINE f_mtx_eq(f_mtx,vkk,n_pole)
USE mesh_variables
USE constants
IMPLICIT NONE
INTEGER i, j, int, istat, n_pole
DOUBLE PRECISION f_mtx,vkk,dp,deriv,pih,xsum
DIMENSION dp(1),deriv(1)
DIMENSION f_mtx(n_rel),vkk(n_rel,n_rel),a(:,:),fu(:),q(:),au(:)
DOUBLE PRECISION, ALLOCATABLE :: fu, q, au, a

pih=2.D0/ACOS(-1.D0)
ALLOCATE( a (n_rel,n_rel), STAT=istat)
DO i=1,n_rel

ALLOCATE(fu(n_rel), q(n_rel), au(n_rel), STAT=istat)
DO j=1,n_rel

fu(j)=vkk(i,j)-vkk(i,n_pole)*vkk(n_pole,j)/
& vkk(n_pole,n_pole)

ENDDO
DO j=1,n_rel

IF(j /= n_pole ) THEN ! regular part
a(j,i)=pih*fu(j)*wra(j)*(ra(j)**2)/

& (ra(j)**2-ra(n_pole)**2)
ELSEIF(j == n_pole) THEN ! use l’Hopitals rule to get pole term

dp(1)=ra(j)
CALL spls3(ra,fu,n_rel,dp,deriv(1),1,q,au,2,0)
a(j,i)=pih*wra(j)*ra(j)/2.d0*deriv(1)

ENDIF
ENDDO
DEALLOCATE(fu, q, au, STAT=istat) ! free space in heap
a(i,i)=a(i,i)+1.D0

ENDDO
CALL matinv(a, n_rel) ! Invert the matrix a
DO j=1,n_rel ! multiply inverted matrix a with dim less pot

xsum=0.D0
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DO i=1,n_rel
xsum=xsum+a(i,j)*vkk(i,n_pole)/vkk(n_pole,n_pole) ! gives f-matrix in V88

ENDDO
f_mtx(j)=xsum

ENDDO
DEALLOCATE (a, STAT=istat)

END SUBROUTINE f_mtx_eq

C **************************************************
C Solves the principal value integral of V89
C returns the t-matrix for k=k, t_shell
C **************************************************

SUBROUTINE principal_value(vkk,f_mtx,n_pole,t_shell)
USE mesh_variables
IMPLICIT NONE
DOUBLE PRECISION vkk, f_mtx, t_shell, sum, pih, deriv, term
DIMENSION deriv(1)
DIMENSION vkk(n_rel, n_rel), f_mtx(n_rel),fu(:), q(:), au(:)
DOUBLE PRECISION, ALLOCATABLE :: fu, q, au
INTEGER n_pole, i, istat

ALLOCATE(fu(n_rel), q(n_rel), au(n_rel), STAT=istat)
sum=0.D0
pih=2.D0/ACOS(-1.D0)
DO i=1,n_rel

fu(i)=vkk(n_pole,i)*f_mtx(i)
ENDDO
DO i=1,n_pole-1 ! integrate up to the pole - 1 mesh

term=fu(i)*(ra(i)**2)-fu(n_pole)*(ra(n_pole)**2)
sum=sum+pih*wra(i)*term/(ra(i)**2-ra(n_pole)**2)

ENDDO ! here comes the pole part
CALL spls3(ra,fu,n_rel,ra(n_pole),deriv,1,au,q,2,0)
sum=sum+pih*wra(n_pole)*(fu(n_pole)+ra(n_pole)*deriv(1)/2.d0)
DO i=n_pole+1,n_rel ! integrate from pole + 1mesh pt to infty

term=fu(i)*(ra(i)**2)-fu(n_pole)*(ra(n_pole)**2)
sum=sum+pih*wra(i)*term/(ra(i)**2-ra(n_pole)**2)

ENDDO
t_shell=vkk(n_pole,n_pole)/(1.d0+sum)
DEALLOCATE (fu, q, au, STAT=istat)

END SUBROUTINE principal_value

C ***********************************************
C Set up of relative mesh and weights
C ***********************************************

SUBROUTINE rel_mesh
USE mesh_variables
IMPLICIT NONE
INTEGER i
DOUBLE PRECISION pih,u,s,xx,c,h_max
PARAMETER (c=0.75)
DIMENSION u(n_rel), s(n_rel)

pih=ACOS(-1.D0)/2.D0
CALL gausslegendret (0.D0,1.d0,n_rel,u,s)
DO i=1,n_rel

xx=pih*u(i)
ra(i)=DTAN(xx)*c
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wra(i)=pih*c/DCOS(xx)**2*s(i)
ENDDO

END SUBROUTINE rel_mesh

C *********************************************************
C Routines to do mtx inversion, from Numerical
C Recepies, Teukolsky et al. Routines included
C below are MATINV, LUDCMP and LUBKSB. See chap 2
C of Numerical Recepies for further details
C Recoded in FORTRAN 90 by M. Hjorth-Jensen
C *********************************************************

SUBROUTINE matinv(a,n)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION a(n,n)
INTEGER istat
DOUBLE PRECISION, ALLOCATABLE :: y(:,:)
INTEGER, ALLOCATABLE :: indx(:)

ALLOCATE (y( n, n), STAT =istat)
ALLOCATE ( indx (n), STAT =istat)
DO i=1,n

DO j=1,n
y(i,j)=0.

ENDDO
y(i,i)=1.

ENDDO
CALL ludcmp(a,n,indx,d)
DO j=1,n

call lubksb(a,n,indx,y(1,j))
ENDDO
DO i=1,n

DO j=1,n
a(i,j)=y(i,j)

ENDDO
ENDDO
DEALLOCATE ( y, STAT=istat)
DEALLOCATE ( indx, STAT=istat)

END SUBROUTINE matinv

SUBROUTINE LUDCMP(A,N,INDX,D)
IMPLICIT REAL*8(A-H,O-Z)
PARAMETER (TINY=1.0E-20)
DIMENSION A(N,N),INDX(N)
INTEGER istat
DOUBLE PRECISION, ALLOCATABLE :: vv(:)

ALLOCATE ( vv(n), STAT = istat)
D=1.
DO I=1,N

AAMAX=0.
DO J=1,N

IF (ABS(A(I,J)) > AAMAX) AAMAX=ABS(A(I,J))
ENDDO
IF (AAMAX == 0.) PAUSE ’Singular matrix.’
VV(I)=1./AAMAX

ENDDO
DO J=1,N
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IF (J > 1) THEN
DO I=1,J-1

SUM=A(I,J)
IF (I > 1)THEN

DO K=1,I-1
SUM=SUM-A(I,K)*A(K,J)

ENDDO
A(I,J)=SUM

ENDIF
ENDDO

ENDIF
AAMAX=0.
DO I=J,N

SUM=A(I,J)
IF (J > 1)THEN

DO K=1,J-1
SUM=SUM-A(I,K)*A(K,J)

ENDDO
A(I,J)=SUM

ENDIF
DUM=VV(I)*ABS(SUM)
IF (DUM >= AAMAX) THEN

IMAX=I
AAMAX=DUM

ENDIF
ENDDO
IF (J /= IMAX)THEN

DO K=1,N
DUM=A(IMAX,K)
A(IMAX,K)=A(J,K)
A(J,K)=DUM

ENDDO
D=-D
VV(IMAX)=VV(J)

ENDIF
INDX(J)=IMAX
IF(J /= N)THEN

IF(A(J,J) == 0.) A(J,J)=TINY
DUM=1./A(J,J)
DO I=J+1,N

A(I,J)=A(I,J)*DUM
ENDDO

ENDIF
ENDDO
IF(A(N,N) == 0.) A(N,N)=TINY
DEALLOCATE ( vv, STAT = istat)

END SUBROUTINE LUDCMP

SUBROUTINE LUBKSB(A,N,INDX,B)
implicit real*8(a-h,o-z)
DIMENSION A(N,N),INDX(N),B(N)
II=0
DO I=1,N

LL=INDX(I)
SUM=B(LL)
B(LL)=B(I)
IF (II /= 0)THEN

DO J=II,I-1
SUM=SUM-A(I,J)*B(J)

ENDDO
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ELSE IF (SUM /= 0.) THEN
II=I

ENDIF
B(I)=SUM

ENDDO
DO I=N,1,-1

SUM=B(I)
IF (I < N)THEN

DO J=I+1,N
SUM=SUM-A(I,J)*B(J)

ENDDO
ENDIF
B(I)=SUM/A(I,I)

ENDDO

END SUBROUTINE lubksb

c) The parameters of the box potential are chosen to fit a potential with a
bound state at zero energy. What does this mean for your T -matrix with this
potential when k → 0?
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