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Why Hartree-Fock? Derivation of Hartree-Fock equations
in coordinate space
Hartree-Fock (HF) theory is an algorithm for finding an approximative expression
for the ground state of a given Hamiltonian. The basic ingredients are

• Define a single-particle basis {ψα} so that

ĥHFψα = εαψα

with the Hartree-Fock Hamiltonian defined as

ĥHF = t̂+ ûext + ûHF

• The term ûHF is a single-particle potential to be determined by the HF
algorithm.

• The HF algorithm means to choose ûHF in order to have

〈Ĥ〉 = EHF = 〈Φ0|Ĥ|Φ0〉

that is to find a local minimum with a Slater determinant Φ0 being the ansatz
for the ground state.

• The variational principle ensures that EHF ≥ E0, with E0 the exact ground
state energy.

http://computationalphysics.no


We will show that the Hartree-Fock Hamiltonian ĥHF equals our definition of the
operator f̂ discussed in connection with the new definition of the normal-ordered
Hamiltonian (see later lectures), that is we have, for a specific matrix element

〈p|ĥHF|q〉 = 〈p|f̂ |q〉 = 〈p|t̂+ ûext|q〉+
∑
i≤F

〈pi|V̂ |qi〉AS ,

meaning that
〈p|ûHF|q〉 =

∑
i≤F

〈pi|V̂ |qi〉AS .

The so-called Hartree-Fock potential ûHF brings an explicit medium dependence
due to the summation over all single-particle states below the Fermi level F . It
brings also in an explicit dependence on the two-body interaction (in nuclear
physics we can also have complicated three- or higher-body forces). The two-
body interaction, with its contribution from the other bystanding fermions,
creates an effective mean field in which a given fermion moves, in addition to the
external potential ûext which confines the motion of the fermion. For systems like
nuclei, there is no external confining potential. Nuclei are examples of self-bound
systems, where the binding arises due to the intrinsic nature of the strong force.
For nuclear systems thus, there would be no external one-body potential in the
Hartree-Fock Hamiltonian.

Variational Calculus and Lagrangian Multipliers
The calculus of variations involves problems where the quantity to be minimized
or maximized is an integral.

In the general case we have an integral of the type

E[Φ] =
∫ b

a

f(Φ(x), ∂Φ
∂x

, x)dx,

where E is the quantity which is sought minimized or maximized. The problem
is that although f is a function of the variables Φ, ∂Φ/∂x and x, the exact
dependence of Φ on x is not known. This means again that even though the
integral has fixed limits a and b, the path of integration is not known. In our
case the unknown quantities are the single-particle wave functions and we wish
to choose an integration path which makes the functional E[Φ] stationary. This
means that we want to find minima, or maxima or saddle points. In physics
we search normally for minima. Our task is therefore to find the minimum of
E[Φ] so that its variation δE is zero subject to specific constraints. In our case
the constraints appear as the integral which expresses the orthogonality of the
single-particle wave functions. The constraints can be treated via the technique
of Lagrangian multipliers

Let us specialize to the expectation value of the energy for one particle in
three-dimensions. This expectation value reads

E =
∫
dxdydzψ∗(x, y, z)Ĥψ(x, y, z),
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with the constraint ∫
dxdydzψ∗(x, y, z)ψ(x, y, z) = 1,

and a Hamiltonian
Ĥ = −1

2∇
2 + V (x, y, z).

We will, for the sake of notational convenience, skip the variables x, y, z below,
and write for example V (x, y, z) = V .

The integral involving the kinetic energy can be written as, with the function
ψ vanishing strongly for large values of x, y, z (given here by the limits a and b),∫ b

a

dxdydzψ∗
(
−1

2∇
2
)
ψdxdydz = ψ∗∇ψ|ba +

∫ b

a

dxdydz
1
2∇ψ

∗∇ψ.

We will drop the limits a and b in the remaining discussion. Inserting this
expression into the expectation value for the energy and taking the variational
minimum we obtain

δE = δ

{∫
dxdydz

(
1
2∇ψ

∗∇ψ + V ψ∗ψ

)}
= 0.

The constraint appears in integral form as∫
dxdydzψ∗ψ = constant,

and multiplying with a Lagrangian multiplier λ and taking the variational
minimum we obtain the final variational equation

δ

{∫
dxdydz

(
1
2∇ψ

∗∇ψ + V ψ∗ψ − λψ∗ψ
)}

= 0.

We introduce the function f

f = 1
2∇ψ

∗∇ψ + V ψ∗ψ − λψ∗ψ = 1
2(ψ∗xψx + ψ∗yψy + ψ∗zψz) + V ψ∗ψ − λψ∗ψ,

where we have skipped the dependence on x, y, z and introduced the shorthand
ψx, ψy and ψz for the various derivatives.

For ψ∗ the Euler-Lagrange equations yield

∂f

∂ψ∗
− ∂

∂x

∂f

∂ψ∗x
− ∂

∂y

∂f

∂ψ∗y
− ∂

∂z

∂f

∂ψ∗z
= 0,

which results in
−1

2(ψxx + ψyy + ψzz) + V ψ = λψ.

We can then identify the Lagrangian multiplier as the energy of the system.
The last equation is nothing but the standard Schroedinger equation and the
variational approach discussed here provides a powerful method for obtaining
approximate solutions of the wave function.
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Definitions and notations
Before we proceed we need some definitions. We will assume that the interacting
part of the Hamiltonian can be approximated by a two-body interaction. This
means that our Hamiltonian is written as the sum of some onebody part and a
twobody part

Ĥ = Ĥ0 + ĤI =
A∑
i=1

ĥ0(xi) +
A∑
i<j

v̂(rij), (1)

with

H0 =
A∑
i=1

ĥ0(xi). (2)

The onebody part uext(xi) is normally approximated by a harmonic oscillator
potential or the Coulomb interaction an electron feels from the nucleus. However,
other potentials are fully possible, such as one derived from the self-consistent
solution of the Hartree-Fock equations to be discussed here.

Our Hamiltonian is invariant under the permutation (interchange) of two
particles. Since we deal with fermions however, the total wave function is
antisymmetric. Let P̂ be an operator which interchanges two particles. Due to
the symmetries we have ascribed to our Hamiltonian, this operator commutes
with the total Hamiltonian,

[Ĥ, P̂ ] = 0,

meaning that Ψλ(x1, x2, . . . , xA) is an eigenfunction of P̂ as well, that is

P̂ijΨλ(x1, x2, . . . , xi, . . . , xj , . . . , xA) = βΨλ(x1, x2, . . . , xi, . . . , xj , . . . , xA),

where β is the eigenvalue of P̂ . We have introduced the suffix ij in order to
indicate that we permute particles i and j. The Pauli principle tells us that the
total wave function for a system of fermions has to be antisymmetric, resulting
in the eigenvalue β = −1.

In our case we assume that we can approximate the exact eigenfunction with
a Slater determinant

Φ(x1, x2, . . . , xA, α, β, . . . , σ) = 1√
A!

∣∣∣∣∣∣∣∣∣∣
ψα(x1) ψα(x2) . . . . . . ψα(xA)
ψβ(x1) ψβ(x2) . . . . . . ψβ(xA)
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

ψσ(x1) ψσ(x2) . . . . . . ψσ(xA)

∣∣∣∣∣∣∣∣∣∣
,

(3)
where xi stand for the coordinates and spin values of a particle i and α, β, . . . , γ
are quantum numbers needed to describe remaining quantum numbers.

The single-particle function ψα(xi) are eigenfunctions of the onebody Hamil-
tonian hi, that is

ĥ0(xi) = t̂(xi) + ûext(xi),
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with eigenvalues

ĥ0(xi)ψα(xi) =
(
t̂(xi) + ûext(xi)

)
ψα(xi) = εαψα(xi).

The energies εα are the so-called non-interacting single-particle energies, or
unperturbed energies. The total energy is in this case the sum over all single-
particle energies, if no two-body or more complicated many-body interactions
are present.

Let us denote the ground state energy by E0. According to the variational
principle we have

E0 ≤ E[Φ] =
∫

Φ∗ĤΦdτ

where Φ is a trial function which we assume to be normalized∫
Φ∗Φdτ = 1,

where we have used the shorthand dτ = dx1dr2 . . . drA.
In the Hartree-Fock method the trial function is the Slater determinant of

Eq. (3) which can be rewritten as

Φ(x1, x2, . . . , xA, α, β, . . . , ν) = 1√
A!

∑
P

(−)P P̂ψα(x1)ψβ(x2) . . . ψν(xA) =
√
A!ÂΦH ,

where we have introduced the antisymmetrization operator Â defined by the
summation over all possible permutations of two particles.

It is defined as
Â = 1

A!
∑
p

(−)pP̂ , (4)

with p standing for the number of permutations. We have introduced for later
use the so-called Hartree-function, defined by the simple product of all possible
single-particle functions

ΦH(x1, x2, . . . , xA, α, β, . . . , ν) = ψα(x1)ψβ(x2) . . . ψν(xA).

Both Ĥ0 and ĤI are invariant under all possible permutations of any two
particles and hence commute with Â

[H0, Â] = [HI , Â] = 0. (5)

Furthermore, Â satisfies
Â2 = Â, (6)

since every permutation of the Slater determinant reproduces it.
The expectation value of Ĥ0∫

Φ∗Ĥ0Φdτ = A!
∫

Φ∗HÂĤ0ÂΦHdτ
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is readily reduced to ∫
Φ∗Ĥ0Φdτ = A!

∫
Φ∗HĤ0ÂΦHdτ,

where we have used Eqs. (5) and (6). The next step is to replace the anti-
symmetrization operator by its definition and to replace Ĥ0 with the sum of
one-body operators∫

Φ∗Ĥ0Φdτ =
A∑
i=1

∑
p

(−)p
∫

Φ∗H ĥ0P̂ΦHdτ.

The integral vanishes if two or more particles are permuted in only one of
the Hartree-functions ΦH because the individual single-particle wave functions
are orthogonal. We obtain then∫

Φ∗Ĥ0Φdτ =
A∑
i=1

∫
Φ∗H ĥ0ΦHdτ.

Orthogonality of the single-particle functions allows us to further simplify the
integral, and we arrive at the following expression for the expectation values of
the sum of one-body Hamiltonians∫

Φ∗Ĥ0Φdτ =
A∑
µ=1

∫
ψ∗µ(x)ĥ0ψµ(x)dxdr. (7)

We introduce the following shorthand for the above integral

〈µ|ĥ0|µ〉 =
∫
ψ∗µ(x)ĥ0ψµ(x)dx,

and rewrite Eq. (7) as ∫
Φ∗Ĥ0Φdτ =

A∑
µ=1
〈µ|ĥ0|µ〉. (8)

The expectation value of the two-body part of the Hamiltonian is obtained
in a similar manner. We have∫

Φ∗ĤIΦdτ = A!
∫

Φ∗HÂĤIÂΦHdτ,

which reduces to∫
Φ∗ĤIΦdτ =

A∑
i≤j=1

∑
p

(−)p
∫

Φ∗H v̂(rij)P̂ΦHdτ,

by following the same arguments as for the one-body Hamiltonian.
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Because of the dependence on the inter-particle distance rij , permutations of
any two particles no longer vanish, and we get∫

Φ∗ĤIΦdτ =
A∑

i<j=1

∫
Φ∗H v̂(rij)(1− Pij)ΦHdτ.

where Pij is the permutation operator that interchanges particle i and particle
j. Again we use the assumption that the single-particle wave functions are
orthogonal.

We obtain∫
Φ∗ĤIΦdτ = 1

2

A∑
µ=1

A∑
ν=1

[∫
ψ∗µ(xi)ψ∗ν(xj)v̂(rij)ψµ(xi)ψν(xj)dxidxj (9)

−
∫
ψ∗µ(xi)ψ∗ν(xj)v̂(rij)ψν(xi)ψµ(xj)dxidxj

]
. (10)

The first term is the so-called direct term. It is frequently also called the Hartree
term, while the second is due to the Pauli principle and is called the exchange
term or just the Fock term. The factor 1/2 is introduced because we now run
over all pairs twice.

The last equation allows us to introduce some further definitions. The single-
particle wave functions ψµ(x), defined by the quantum numbers µ and x are
defined as the overlap

ψα(x) = 〈x|α〉.

We introduce the following shorthands for the above two integrals

〈µν|v̂|µν〉 =
∫
ψ∗µ(xi)ψ∗ν(xj)v̂(rij)ψµ(xi)ψν(xj)dxidxj ,

and
〈µν|v̂|νµ〉 =

∫
ψ∗µ(xi)ψ∗ν(xj)v̂(rij)ψν(xi)ψµ(xj)dxidxj .

Derivation of Hartree-Fock equations in coordinate space
Let us denote the ground state energy by E0. According to the variational
principle we have

E0 ≤ E[Φ] =
∫

Φ∗ĤΦdτ

where Φ is a trial function which we assume to be normalized∫
Φ∗Φdτ = 1,

where we have used the shorthand dτ = dx1dx2 . . . dxA.
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In the Hartree-Fock method the trial function is a Slater determinant which
can be rewritten as

Ψ(x1, x2, . . . , xA, α, β, . . . , ν) = 1√
A!

∑
P

(−)PPψα(x1)ψβ(x2) . . . ψν(xA) =
√
A!ÂΦH ,

where we have introduced the anti-symmetrization operator Â defined by the
summation over all possible permutations p of two fermions. It is defined as

Â = 1
A!
∑
p

(−)pP̂ ,

with the the Hartree-function given by the simple product of all possible single-
particle function

ΦH(x1, x2, . . . , xA, α, β, . . . , ν) = ψα(x1)ψβ(x2) . . . ψν(xA).

Our functional is written as

E[Φ] =
A∑
µ=1

∫
ψ∗µ(xi)ĥ0(xi)ψµ(xi)dxi+

1
2

A∑
µ=1

A∑
ν=1

[∫
ψ∗µ(xi)ψ∗ν(xj)v̂(rij)ψµ(xi)ψν(xj)dxidxj −

∫
ψ∗µ(xi)ψ∗ν(xj)v̂(rij)ψν(xi)ψµ(xj)dxidxj

]
The more compact version reads

E[Φ] =
A∑
µ

〈µ|ĥ0|µ〉+ 1
2

A∑
µν

[〈µν|v̂|µν〉 − 〈νµ|v̂|µν〉] .

Since the interaction is invariant under the interchange of two particles it
means for example that we have

〈µν|v̂|µν〉 = 〈νµ|v̂|νµ〉,

or in the more general case

〈µν|v̂|στ〉 = 〈νµ|v̂|τσ〉.

The direct and exchange matrix elements can be brought together if we define
the antisymmetrized matrix element

〈µν|v̂|µν〉AS = 〈µν|v̂|µν〉 − 〈µν|v̂|νµ〉,

or for a general matrix element

〈µν|v̂|στ〉AS = 〈µν|v̂|στ〉 − 〈µν|v̂|τσ〉.

It has the symmetry property

〈µν|v̂|στ〉AS = −〈µν|v̂|τσ〉AS = −〈νµ|v̂|στ〉AS .
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The antisymmetric matrix element is also hermitian, implying

〈µν|v̂|στ〉AS = 〈στ |v̂|µν〉AS .

With these notations we rewrite the Hartree-Fock functional as∫
Φ∗ĤIΦdτ = 1

2

A∑
µ=1

A∑
ν=1
〈µν|v̂|µν〉AS . (11)

Adding the contribution from the one-body operator Ĥ0 to (11) we obtain
the energy functional

E[Φ] =
A∑
µ=1
〈µ|h|µ〉+ 1

2

A∑
µ=1

A∑
ν=1
〈µν|v̂|µν〉AS . (12)

In our coordinate space derivations below we will spell out the Hartree-Fock
equations in terms of their integrals.

If we generalize the Euler-Lagrange equations to more variables and introduce
N2 Lagrange multipliers which we denote by εµν , we can write the variational
equation for the functional of E

δE −
A∑
µν

εµνδ

∫
ψ∗µψν = 0.

For the orthogonal wave functions ψi this reduces to

δE −
A∑
µ=1

εµδ

∫
ψ∗µψµ = 0.

Variation with respect to the single-particle wave functions ψµ yields then

A∑
µ=1

∫
δψ∗µĥ0(xi)ψµdxi+

1
2

A∑
µ=1

A∑
ν=1

[∫
δψ∗µψ

∗
ν v̂(rij)ψµψνdxidxj −

∫
δψ∗µψ

∗
ν v̂(rij)ψνψµdxidxj

]
+

A∑
µ=1

∫
ψ∗µĥ0(xi)δψµdxi+

1
2

A∑
µ=1

A∑
ν=1

[∫
ψ∗µψ

∗
ν v̂(rij)δψµψνdxidxj −

∫
ψ∗µψ

∗
ν v̂(rij)ψνδψµdxidxj

]
−

A∑
µ=1

Eµ

∫
δψ∗µψµdxi−

A∑
µ=1

Eµ

∫
ψ∗µδψµdxi = 0.

Although the variations δψ and δψ∗ are not independent, they may in fact be
treated as such, so that the terms dependent on either δψ and δψ∗ individually
may be set equal to zero. To see this, simply replace the arbitrary variation δψ
by iδψ, so that δψ∗ is replaced by −iδψ∗, and combine the two equations. We
thus arrive at the Hartree-Fock equations[
−1

2∇
2
i +

A∑
ν=1

∫
ψ∗ν(xj)v̂(rij)ψν(xj)dxj

]
ψµ(xi)−

[
A∑
ν=1

∫
ψ∗ν(xj)v̂(rij)ψµ(xj)dxj

]
ψν(xi) = εµψµ(xi).

(13)
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Notice that the integration
∫
dxj implies an integration over the spatial coordi-

nates rj and a summation over the spin-coordinate of fermion j. We note that
the factor of 1/2 in front of the sum involving the two-body interaction, has
been removed. This is due to the fact that we need to vary both δψ∗µ and δψ∗ν .
Using the symmetry properties of the two-body interaction and interchanging µ
and ν as summation indices, we obtain two identical terms.

The two first terms in the last equation are the one-body kinetic energy and
the electron-nucleus potential. The third or direct term is the averaged electronic
repulsion of the other electrons. As written, the term includes the self-interaction
of electrons when µ = ν. The self-interaction is cancelled in the fourth term, or
the exchange term. The exchange term results from our inclusion of the Pauli
principle and the assumed determinantal form of the wave-function. Equation
(13), in addition to the kinetic energy and the attraction from the atomic nucleus
that confines the motion of a single electron, represents now the motion of a
single-particle modified by the two-body interaction. The additional contribution
to the Schroedinger equation due to the two-body interaction, represents a mean
field set up by all the other bystanding electrons, the latter given by the sum
over all single-particle states occupied by N electrons.

The Hartree-Fock equation is an example of an integro-differential equation.
These equations involve repeated calculations of integrals, in addition to the
solution of a set of coupled differential equations. The Hartree-Fock equations
can also be rewritten in terms of an eigenvalue problem. The solution of an
eigenvalue problem represents often a more practical algorithm and the solution
of coupled integro-differential equations. This alternative derivation of the
Hartree-Fock equations is given below.

Analysis of Hartree-Fock equations in coordinate space
A theoretically convenient form of the Hartree-Fock equation is to regard the
direct and exchange operator defined through

V dµ (xi) =
∫
ψ∗µ(xj)v̂(rij)ψµ(xj)dxj

and
V exµ (xi)g(xi) =

(∫
ψ∗µ(xj)v̂(rij)g(xj)dxj

)
ψµ(xi),

respectively.
The function g(xi) is an arbitrary function, and by the substitution g(xi) =

ψν(xi) we get

V exµ (xi)ψν(xi) =
(∫

ψ∗µ(xj)v̂(rij)ψν(xj)dxj
)
ψµ(xi).

We may then rewrite the Hartree-Fock equations as

ĥHF (xi)ψν(xi) = ενψν(xi),
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with

ĥHF (xi) = ĥ0(xi) +
A∑
µ=1

V dµ (xi)−
A∑
µ=1

V exµ (xi),

and where ĥ0(i) is the one-body part. The latter is normally chosen as a part
which yields solutions in closed form. The harmonic oscilltor is a classical
problem thereof. We normally rewrite the last equation as

ĥHF (xi) = ĥ0(xi) + ûHF (xi).

Hartree-Fock by varying the coefficients of a wave function
expansion
Another possibility is to expand the single-particle functions in a known basis
and vary the coefficients, that is, the new single-particle wave function is written
as a linear expansion in terms of a fixed chosen orthogonal basis (for example
the well-known harmonic oscillator functions or the hydrogen-like functions etc).
We define our new Hartree-Fock single-particle basis by performing a unitary
transformation on our previous basis (labelled with greek indices) as

ψHFp =
∑
λ

Cpλφλ. (14)

In this case we vary the coefficients Cpλ. If the basis has infinitely many solutions,
we need to truncate the above sum. We assume that the basis φλ is orthogonal.
A unitary transformation keeps the orthogonality, as discussed in exercise 1
below.

It is normal to choose a single-particle basis defined as the eigenfunctions of
parts of the full Hamiltonian. The typical situation consists of the solutions of
the one-body part of the Hamiltonian, that is we have

ĥ0φλ = ελφλ.

The single-particle wave functions φλ(r), defined by the quantum numbers λ
and r are defined as the overlap

φλ(r) = 〈r|λ〉.

In our discussions hereafter we will use our definitions of single-particle states
above and below the Fermi (F ) level given by the labels ijkl · · · ≤ F for so-called
single-hole states and abcd · · · > F for so-called particle states. For general
single-particle states we employ the labels pqrs . . . .

In Eq. (12), restated here

E[Φ] =
A∑
µ=1
〈µ|h|µ〉+ 1

2

A∑
µ=1

A∑
ν=1
〈µν|v̂|µν〉AS ,
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we found the expression for the energy functional in terms of the basis function
φλ(r). We then varied the above energy functional with respect to the basis
functions |µ〉. Now we are interested in defining a new basis defined in terms of
a chosen basis as defined in Eq. (14). We can then rewrite the energy functional
as

E[ΦHF ] =
A∑
i=1
〈i|h|i〉+ 1

2

A∑
ij=1
〈ij|v̂|ij〉AS , (15)

where ΦHF is the new Slater determinant defined by the new basis of Eq. (14).
Using Eq. (14) we can rewrite Eq. (15) as

E[Ψ] =
A∑
i=1

∑
αβ

C∗iαCiβ〈α|h|β〉+ 1
2

A∑
ij=1

∑
αβγδ

C∗iαC
∗
jβCiγCjδ〈αβ|v̂|γδ〉AS . (16)

We wish now to minimize the above functional. We introduce again a set
of Lagrange multipliers, noting that since 〈i|j〉 = δi,j and 〈α|β〉 = δα,β , the
coefficients Ciγ obey the relation

〈i|j〉 = δi,j =
∑
αβ

C∗iαCiβ〈α|β〉 =
∑
α

C∗iαCiα,

which allows us to define a functional to be minimized that reads

F [ΦHF ] = E[ΦHF ]−
A∑
i=1

εi
∑
α

C∗iαCiα. (17)

Minimizing with respect to C∗iα, remembering that the equations for C∗iα and
Ciα can be written as two independent equations, we obtain

d

dC∗iα

E[ΦHF ]−
∑
j

εj
∑
α

C∗jαCjα

 = 0,

which yields for every single-particle state i and index α (recalling that the
coefficients Ciα are matrix elements of a unitary (or orthogonal for a real
symmetric matrix) matrix) the following Hartree-Fock equations

∑
β

Ciβ〈α|h|β〉+
A∑
j=1

∑
βγδ

C∗jβCjδCiγ〈αβ|v̂|γδ〉AS = εHFi Ciα.

We can rewrite this equation as (changing dummy variables)

∑
β

〈α|h|β〉+
A∑
j

∑
γδ

C∗jγCjδ〈αγ|v̂|βδ〉AS

Ciβ = εHFi Ciα.

Note that the sums over greek indices run over the number of basis set functions
(in principle an infinite number).
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Defining

hHFαβ = 〈α|h|β〉+
A∑
j=1

∑
γδ

C∗jγCjδ〈αγ|v̂|βδ〉AS ,

we can rewrite the new equations as∑
γ

hHFαβ Ciβ = εHFi Ciα. (18)

The latter is nothing but a standard eigenvalue problem. Compared with Eq. (13),
we see that we do not need to compute any integrals in an iterative procedure
for solving the equations. It suffices to tabulate the matrix elements 〈α|h|β〉 and
〈αγ|v̂|βδ〉AS once and for all. Successive iterations require thus only a look-up
in tables over one-body and two-body matrix elements. These details will be
discussed below when we solve the Hartree-Fock equations numerical.

Hartree-Fock algorithm
Our Hartree-Fock matrix is thus

ĥHFαβ = 〈α|ĥ0|β〉+
A∑
j=1

∑
γδ

C∗jγCjδ〈αγ|v̂|βδ〉AS .

The Hartree-Fock equations are solved in an iterative waym starting with a
guess for the coefficients Cjγ = δj,γ and solving the equations by diagonalization
till the new single-particle energies εHF

i do not change anymore by a prefixed
quantity.

Normally we assume that the single-particle basis |β〉 forms an eigenbasis for
the operator ĥ0, meaning that the Hartree-Fock matrix becomes

ĥHFαβ = εαδα,β +
A∑
j=1

∑
γδ

C∗jγCjδ〈αγ|v̂|βδ〉AS .

The Hartree-Fock eigenvalue problem∑
β

ĥHFαβ Ciβ = εHF
i Ciα,

can be written out in a more compact form as

ĥHF Ĉ = εHFĈ.

The Hartree-Fock equations are, in their simplest form, solved in an iterative
way, starting with a guess for the coefficients Ciα. We label the coefficients as
C

(n)
iα , where the subscript n stands for iteration n. To set up the algorithm we

can proceed as follows:
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• We start with a guess C(0)
iα = δi,α. Alternatively, we could have used

random starting values as long as the vectors are normalized. Another
possibility is to give states below the Fermi level a larger weight.

• The Hartree-Fock matrix simplifies then to (assuming that the coefficients
Ciα are real)

ĥHFαβ = εαδα,β +
A∑
j=1

∑
γδ

C
(0)
jγ C

(0)
jδ 〈αγ|v̂|βδ〉AS .

Solving the Hartree-Fock eigenvalue problem yields then new eigenvectors
C

(1)
iα and eigenvalues εHF (1)

i .

• With the new eigenvalues we can set up a new Hartree-Fock potential
A∑
j=1

∑
γδ

C
(1)
jγ C

(1)
jδ 〈αγ|v̂|βδ〉AS .

The diagonalization with the new Hartree-Fock potential yields new eigenvectors
and eigenvalues. This process is continued till for example∑

p |ε
(n)
i − ε(n−1)

i |
m

≤ λ,

where λ is a user prefixed quantity (λ ∼ 10−8 or smaller) and p runs over all
calculated single-particle energies and m is the number of single-particle states.

• TODO: add code with Hartree-Fock for nuclear system

Analysis of Hartree-Fock equations and Koopman’s theo-
rem
We can rewrite the ground state energy by adding and subtracting ûHF (xi)

EHF0 = 〈Φ0|Ĥ|Φ0〉 =
A∑
i≤F

〈i|ĥ0+ûHF |j〉+1
2

A∑
i≤F

A∑
j≤F

[〈ij|v̂|ij〉 − 〈ij|v̂|ji〉]−
A∑
i≤F

〈i|ûHF |i〉,

which results in

EHF0 =
A∑
i≤F

εHFi + 1
2

A∑
i≤F

A∑
j≤F

[〈ij|v̂|ij〉 − 〈ij|v̂|ji〉]−
A∑
i≤F

〈i|ûHF |i〉.

Our single-particle states ijk . . . are now single-particle states obtained from the
solution of the Hartree-Fock equations.
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Using our definition of the Hartree-Fock single-particle energies we obtain
then the following expression for the total ground-state energy

EHF0 =
A∑
i≤F

εi −
1
2

A∑
i≤F

A∑
j≤F

[〈ij|v̂|ij〉 − 〈ij|v̂|ji〉] .

This form will be used in our discussion of Koopman’s theorem.
In the atomic physics case we have

E[ΦHF(N)] =
H∑
i=1
〈i|ĥ0|i〉+ 1

2

N∑
ij=1
〈ij|v̂|ij〉AS ,

where ΦHF(N) is the new Slater determinant defined by the new basis of Eq. (14)
for N electrons (same Z). If we assume that the single-particle wave functions
in the new basis do not change when we remove one electron or add one electron,
we can then define the corresponding energy for the N − 1 systems as

E[ΦHF(N − 1)] =
N∑

i=1;i6=k
〈i|ĥ0|i〉+ 1

2

N∑
ij=1;i,j 6=k

〈ij|v̂|ij〉AS ,

where we have removed a single-particle state k ≤ F , that is a state below the
Fermi level.

Calculating the difference

E[ΦHF(N)]−E[ΦHF(N−1)] = 〈k|ĥ0|k〉+
1
2

N∑
i=1;i6=k

〈ik|v̂|ik〉AS+1
2

N∑
j=1;j 6=k

〈kj|v̂|kj〉AS ,

we obtain

E[ΦHF(N)]− E[ΦHF(N − 1)] = 〈k|ĥ0|k〉+
N∑
j=1
〈kj|v̂|kj〉AS

which is just our definition of the Hartree-Fock single-particle energy

E[ΦHF(N)]− E[ΦHF(N − 1)] = εHF
k

Similarly, we can now compute the difference (we label the single-particle
states above the Fermi level as abcd > F )

E[ΦHF(N + 1)]− E[ΦHF(N)] = εHF
a .

These two equations can thus be used to the electron affinity or ionization energies,
respectively. Koopman’s theorem states that for example the ionization energy of
a closed-shell system is given by the energy of the highest occupied single-particle
state. If we assume that changing the number of electrons from N to N + 1 does
not change the Hartree-Fock single-particle energies and eigenfunctions, then
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Koopman’s theorem simply states that the ionization energy of an atom is given
by the single-particle energy of the last bound state. In a similar way, we can
also define the electron affinities.

As an example, consider a simple model for atomic sodium, Na. Neutral
sodium has eleven electrons, with the weakest bound one being confined the 3s
single-particle quantum numbers. The energy needed to remove an electron from
neutral sodium is rather small, 5.1391 eV, a feature which pertains to all alkali
metals. Having performed a Hartree-Fock calculation for neutral sodium would
then allows us to compute the ionization energy by using the single-particle
energy for the 3s states, namely εHF

3s .
From these considerations, we see that Hartree-Fock theory allows us to make

a connection between experimental observables (here ionization and affinity
energies) and the underlying interactions between particles. In this sense, we are
now linking the dynamics and structure of a many-body system with the laws of
motion which govern the system. Our approach is a reductionistic one, meaning
that we want to understand the laws of motion in terms of the particles or degrees
of freedom which we believe are the fundamental ones. Our Slater determinant,
being constructed as the product of various single-particle functions, follows this
philosophy.

With similar arguments as in atomic physics, we can now use Hartree-Fock
theory to make a link between nuclear forces and separation energies. Changing
to nuclear system, we define

E[ΦHF(A)] =
A∑
i=1
〈i|ĥ0|i〉+ 1

2

A∑
ij=1
〈ij|v̂|ij〉AS ,

where ΦHF(A) is the new Slater determinant defined by the new basis of Eq. (14)
for A nucleons, where A = N + Z, with N now being the number of neutrons
and Z th enumber of protons. If we assume again that the single-particle wave
functions in the new basis do not change from a nucleus with A nucleons to a
nucleus with A− 1 nucleons, we can then define the corresponding energy for
the A− 1 systems as

E[ΦHF(A− 1)] =
A∑

i=1;i 6=k
〈i|ĥ0|i〉+ 1

2

A∑
ij=1;i,j 6=k

〈ij|v̂|ij〉AS ,

where we have removed a single-particle state k ≤ F , that is a state below the
Fermi level.

Calculating the difference

E[ΦHF(A)]−E[ΦHF(A−1)] = 〈k|ĥ0|k〉+
1
2

A∑
i=1;i 6=k

〈ik|v̂|ik〉AS+1
2

A∑
j=1;j 6=k

〈kj|v̂|kj〉AS ,

which becomes

E[ΦHF(A)]− E[ΦHF(A− 1)] = 〈k|ĥ0|k〉+
A∑
j=1
〈kj|v̂|kj〉AS
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which is just our definition of the Hartree-Fock single-particle energy

E[ΦHF(A)]− E[ΦHF(A− 1)] = εHF
k

Similarly, we can now compute the difference (recall that the single-particle
states abcd > F )

E[ΦHF(A+ 1)]− E[ΦHF(A)] = εHF
a .

If we then recall that the binding energy differences

BE(A)−BE(A− 1) and BE(A+ 1)−BE(A),

define the separation energies, we see that the Hartree-Fock single-particle
energies can be used to define separation energies. We have thus our first link
between nuclear forces (included in the potential energy term) and an observable
quantity defined by differences in binding energies.

We have thus the following interpretations (if the single-particle fields do not
change)

BE(A)−BE(A− 1) ≈ E[ΦHF(A)]− E[ΦHF(A− 1)] = εHF
k ,

and
BE(A+ 1)−BE(A) ≈ E[ΦHF(A+ 1)]− E[ΦHF(A)] = εHF

a .

If we use 16O as our closed-shell nucleus, we could then interpret the separation
energy

BE(16O)−BE(15O) ≈ εHF
0pν1/2

,

and
BE(16O)−BE(15N) ≈ εHF

0pπ1/2
.

Similalry, we could interpret

BE(17O)−BE(16O) ≈ εHF
0dν5/2

,

and
BE(17F)−BE(16O) ≈ εHF

0dπ5/2
.

We can continue like this for all A± 1 nuclei where A is a good closed-shell (or
subshell closure) nucleus. Examples are 22O, 24O, 40Ca, 48Ca, 52Ca, 54Ca, 56Ni,
68Ni, 78Ni, 90Zr, 88Sr, 100Sn, 132Sn and 208Pb, to mention some possile cases.

We can thus make our first interpretation of the separation energies in terms
of the simplest possible many-body theory. If we also recall that the so-called
energy gap for neutrons (or protons) is defined as

∆Sn = 2BE(N,Z)−BE(N − 1, Z)−BE(N + 1, Z),

for neutrons and the corresponding gap for protons

∆Sp = 2BE(N,Z)−BE(N,Z − 1)−BE(N,Z + 1),
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we can define the neutron and proton energy gaps for 16O as

∆Sν = εHF
0dν5/2

− εHF
0pν1/2

,

and
∆Sπ = εHF

0dπ5/2
− εHF

0pπ1/2
.

Exercise 1: Derivation of Hartree-Fock equations
Consider a Slater determinant built up of single-particle orbitals ψλ, with
λ = 1, 2, . . . , N .

The unitary transformation

ψa =
∑
λ

Caλφλ,

brings us into the new basis. The new basis has quantum numbers a = 1, 2, . . . , N .
aragraph!paragraph>paragraph>-0.5em

a) Show that the new basis is orthonormal.
aragraph!paragraph>paragraph>-0.5em

b) Show that the new Slater determinant constructed from the new single-
particle wave functions can be written as the determinant based on the previous
basis and the determinant of the matrix C.

aragraph!paragraph>paragraph>-0.5em

c) Show that the old and the new Slater determinants are equal up to a
complex constant with absolute value unity.

Hint. Use the fact that C is a unitary matrix.

Exercise 2: Derivation of Hartree-Fock equations
Consider the Slater determinant

Φ0 = 1√
n!

∑
p

(−)pP
n∏
i=1

ψαi(xi).

A small variation in this function is given by

δΦ0 = 1√
n!

∑
p

(−)pPψα1(x1)ψα2(x2) . . . ψαi−1(xi−1)(δψαi(xi))ψαi+1(xi+1) . . . ψαn(xn).

aragraph!paragraph>paragraph>-0.5em

a) Show that

〈δΦ0|
n∑
i=1
{t(xi) + u(xi)}+

1
2

n∑
i 6=j=1

v(xi, xj)|Φ0〉 =
n∑
i=1
〈δψαi |t̂+û|φαi〉+

n∑
i6=j=1

{
〈δψαiψαj |v̂|ψαiψαj 〉 − 〈δψαiψαj |v̂|ψαjψαi〉

}
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Exercise 3: Hartree-Fock calculations in atomic physics
In this exercise we will develop two simple models for studying the helium atom
(with two electrons) and the beryllium atom with four electrons. The reason why
we chose these systems is simply due to the fact that we can use hydrogen-like
single-particle state functions. These functions allow for simple evaluations of
the two-body integrals needed in a Hartree-Fock calculation. In most cases, these
integrals have a simple closed form solution, as indicated in the table below.

After having introduced the Born-Oppenheimer approximation which ef-
fectively freezes out the nucleonic degrees of freedom, the Hamiltonian for N
electrons takes the following form

Ĥ =
N∑
i=1

t(xi)−
N∑
i=1

k
Ze2

ri
+

N∑
i<j

ke2

rij
,

with k = 1.44 eVnm. Througout this work we will use atomic units, this means
that ~ = c = e = me = 1. The constant k becomes also equal 1. The resulting
energies have to be multiplied by 2 × 13.6 eV in order to obtain energies in
eletronvolts.

We can rewrite our Hamiltonians as

Ĥ = Ĥ0 + ĤI =
N∑
i=1

ĥ0(xi) +
N∑
i<j

1
rij
,

where we have defined rij = |ri − rj | and ĥ0(xi) = t̂(xi) − Z
ri

The variable x
contains both the spatial coordinates and the spin values. The first term of the
previous equation, H0, is the sum of the N one-body Hamiltonians ĥ0. Each
individual Hamiltonian ĥ0 contains the kinetic energy operator of an electron
and its potential energy due to the attraction of the nucleus. The second term,
HI , is the sum of the N(N − 1)/2 two-body interactions between each pair of
electrons. Note that the double sum carries a restriction i < j.

As basis functions for our calculations we will use hydrogen-like single-particle
functions. This means the onebody operator is diagonal in this basis for states
i, j with quantum numbers nlmlsms with energies

〈i|ĥ0|j〉 = −Z2/2n2δi,j .

The quantum number n refers to the number of nodes of the wave function.
Observe that this expectation value is independent of spin.

We will in all calculations here restrict ourselves to only so-called s -waves,
that is the orbital momentum l is zero. We will also limit the quantum number
n to n ≤ 3. It means that every ns state can accomodate two electrons due to
the spin degeneracy. In the calculations you will need the Coulomb interaction
with matrix elements involving single-particle wave functions with l = 0 only,
the so-called s-waves. We need only the radial part since the spherical harmonics
for the s-waves are rather simple. We omit single-particle states with l > 0. Our
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radial part of the wave functions are

Rn0(r) =
(

2Z
n

)3/2√ (n− 1)!
2n× n! L

1
n−1(2Zr

n
) exp (−Zr

n
),

where L1
n−1(r) are the so-called Laguerre polynomials. These wave functions

can then be used to compute the direct part of the Coulomb interaction

〈αβ|V |γδ〉 =
∫
r2

1dr1

∫
r2

2dr2R
∗
nα0(r1)R∗nβ0(r2) 1

|r1 − r2|
Rnγ0(r1)Rnδ0(r2)

Observe that this is only the radial integral and that the labels αβγδ refer only
to the quantum numbers nlml, with ml the projection of the orbital momentum l.
A similar expression can be found for the exchange part. Since we have restricted
ourselves to only s-waves, these integrals are straightforward but tedious to
calculate. As an addendum to this project we list all closed-form expressions
for the relevant matrix elements. Note well that these matrix elements do not
include spin. When setting up the final antisymmetrized matrix elements you
need to consider the spin degrees of freedom as well. Please pay in particular
special attention to the exchange part and the pertinent spin values of the
single-particle states.

We will also, for both helium and beryllium assume that the many-particle
states we construct have always the same total spin projection MS = 0. This
means that if we excite one or two particles from the ground state, the spins of
the various single-particle states should always sum up to zero.

aragraph!paragraph>paragraph>-0.5em

a) We start with the helium atom and define our single-particle Hilbert space
to consist of the single-particle orbits 1s, 2s and 3s, with their corresponding
spin degeneracies.

Set up the ansatz for the ground state |c〉 = |Φ0〉 in second quantization
and define a table of single-particle states. Construct thereafter all possible
one-particle-one-hole excitations |Φa

i 〉 where i refer to levels below the Fermi
level (define this level) and a refers to particle states. Define particles and holes.
The Slater determinants have to be written in terms of the respective creation
and annihilation operators. The states you construct should all have total spin
projection MS = 0. Construct also all possible two-particle-two-hole states |Φabij 〉
in a second quantization representation.

aragraph!paragraph>paragraph>-0.5em

b) Define the Hamiltonian in a second-quantized form and use this to compute
the expectation value of the ground state (defining the so-called reference energy
and later our Hartree-Fock functional) of the helium atom. Show that it is given
by

E[Φ0] = 〈c|Ĥ|c〉 =
∑
i

〈i|ĥ0|i〉+ 1
2
∑
ij

[
〈ij|1

r
|ij〉 − 〈ij|1

r
|ji〉
]
.

Define properly the sums keeping in mind that the states ij refer to all quantum
numbers nlmlsms. Use the values for the various matrix elements listed at the
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end of the project to find the value of E as function of Z and compute E as
function of Z.

aragraph!paragraph>paragraph>-0.5em

c) Hereafter we will limit ourselves to a system which now contains only
one-particle-one-hole excitations beyond the chosen state |c〉. Using the possible
Slater determinants from exercise a) for the helium atom, find the expressions
(without inserting the explicit values for the matrix elements first) for

〈c|Ĥ|Φai 〉,

and
〈Φai |Ĥ|Φbj〉.

Represent these expressions in a diagrammatic form, both for the onebody part
and the two-body part of the Hamiltonian.

Insert then the explicit values for the various matrix elements and set up the
final Hamiltonian matrix and diagonalize it using for example Octave, Matlab,
Python, C++ or Fortran as programming tools.

Compare your results from those of exercise b) and comment your results.
The exact energy with our Hamiltonian is −2.9037 atomic units for helium. This
value is also close to the experimental energy.

aragraph!paragraph>paragraph>-0.5em

d) We repeat exercises b) and c) but now for the beryllium atom. Define
the ansatz for |c〉 and limit yourself again to one-particle-one-hole excitations.
Compute the reference energy 〈c|Ĥ|c〉 as function of Z. Thereafter you will need
to set up the appropriate Hamiltonian matrix which involves also one-particle-
one-hole excitations. Diagonalize this matrix and compare your eigenvalues with
〈c|Ĥ|c〉 as function of Z and comment your results. The exact energy with our
Hamiltonian is −14.6674 atomic units for beryllium. This value is again close to
the experimental energy.

With a given energy functional, we can perform at least two types of varia-
tional strategies

1. Vary the Slater determinant by changing the spatial part of the single-
particle

wave functions themselves.

1. Expand the single-particle functions in a known basis and vary the coeffi-
cients,

that is, the new function single-particle wave function |p〉 is written as a linear
expansion in terms of a fixed basis φ (harmonic oscillator, Laguerre polynomials
etc)

ψp =
∑
λ

Cpλφλ,
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Both cases lead to a new Slater determinant which is related to the previous via
a unitary transformation. Below we will set up the Hartree-Fock equations using
the second option. We assume that our basis is still formed by the hydrogen-like
wave functions. We consider a Slater determinant built up of single-particle
orbitals φλ where the indices λ refer to specific single-particle states. As an
example, you could think of the ground state ansatz for the Beryllium atom.

The unitary transformation

ψp =
∑
λ

Cpλφλ,

brings us into the new basis ψ. The new basis is orthonormal and C is a unitary
matrix.

aragraph!paragraph>paragraph>-0.5em

e) Minimizing with respect to C∗pα, remembering that C∗pα and Cpα (and
that the indices contain all single-particle quantum numbers including spin) are
independent and defining

hHFαγ = 〈α|h|γ〉+
∑
p

∑
βδ

C∗pβCpδ〈αβ|V |γδ〉AS ,

show that you can write the Hartree-Fock equations as∑
γ

hHFαγ Cpγ = εHF
p Cpα.

Explain the meaning of the different terms and define the Hartree-Fock operator
in second quantization. Write down its diagrammatic representation as well.
The greek letters refer to the wave functions in the original basis (in our case
the hydrogen-like wave functions) while roman letters refer to the new basis.

aragraph!paragraph>paragraph>-0.5em

f) The Hartree-Fock equations with a variation of the coefficients Cpα lead to
an eigenvalue problem whose eigenvectors are the coefficients Cpα and eigenvalues
are the new single-particle energies. Use the single-particle orbits 1s− 3s and set
up the Hartree-Fock matrix for both the helium atom and the beryllium atom.
Find after the first diagonalization the new single-particle energies and the new
ground state energy. Compare these results with those you obtained under the
minimization of the ground states as functions of Z and the full diagonalization.
When setting up the Hartree-Fock matrix in the first iteration, our guess for the
coefficients Cpβ etc. is Cpβ = 1 for p = β and zero else. The final stage is to
set up an iterative scheme where you use the new wave functions determined
via the coefficients Cpα to solve iteratively the Hartree-Fock equations till a
given self-consistency is reached. A typical way of doing this is to compare the
single-particle energies from the previous iteration with those obtained from the
new diagonalization. If the total difference is smaller than a prefixed value, the
iterative process is stopped.
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Compare these results with the those you obtained under the minimization
of the ground states as functions of Z and the full diagonalization. Discuss your
results.

Solution. The following Python program set ups a simple Hartree-Fock pro-
gram for solving the above problem, using as input the integrals listed at the
end here.

"""
Program for solving Hartree Fock iteratively.
1. Import radial integral results
2. Set up HF matrix using C = I as initial guess
3. Solve eigenvalue problem using numpy.linalg
4. Use resulting eigenvectors to assemble new HF matrix
5. Repeat steps 3 and 4 until convergence is met.
6. Calculate ground state energy from resulting C.
"""

from __future__ import division
from sympy import *
from numpy import *
import pickle, sys

Z = Symbol("Z")

class HF:
"""
Class for solving the Hartree Fock equations iteratively.
"""

def __init__(self, N, basis, Z_value, first_C=’identity’):
"""
N is the number of particles in the system and basis
is the single-particle basis for the system.
"""
# Read in the radial_integrals from pickled object
with open("radial_integrals.p", "rb") as infile:

self.radial_integrals = pickle.load(infile)

self.N = N # number of particles in the system
self.basis = basis # single-particle basis for the system
self.Z_value = Z_value # atomic number of the atom
self.n = len(basis) # number of single-particle basis states
self.ek = array((0,0,0,0,0,0)) # new single-particle energies
self.E = 0 # energy
# Set up the first coefficient matrix to be used
if first_C == ’identity’:

self.C = identity(self.n)
elif first_C == ’zero’:

self.C = zeros((self.n, self.n))
elif first_C == ’rand’:

self.C = random.rand(self.n, self.n)
else:

print "first_C argument not understood"
print "Legal values are: ’identity’, ’zero’, ’rand’"
sys.exit(1)

self.h_HF = zeros((self.n, self.n))
self.assemble_HF_matrix() # set up HF matrix for C = I
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def h_0(self, p, q):
"""
Takes the integer values of states and returns the
asymmetrized twobody matrix element <pq||rs>.
"""
n1, s1 = self.basis[p]
n2, s2 = self.basis[q]

if n1 != n2 or s1 != s2:
return 0

else:
return -Z**2/(2*n1**2)

def rad(self, n1, n2, n3, n4):
"""
Returns the radial integral <n1, n2|v|n3, n4>.
"""
return self.radial_integrals[n1-1, n2-1, n3-1, n4-1]

def h_1(self, p, q, r, s):
"""
Takes the integer values of four basis-states and returns
the asymmetrized twobody matrix element <pq||rs>.
"""
n1, s1 = self.basis[p]
n2, s2 = self.basis[q]
n3, s3 = self.basis[r]
n4, s4 = self.basis[s]

if s1 == s2 == s3 == s4:
return self.rad(n1, n2, n3, n4) - self.rad(n1, n2, n4, n3)

if s1 == s3 and s2 == s4:
return self.rad(n1, n2, n3, n4)

if s1 == s4 and s2 == s3:
return -self.rad(n1, n2, n4, n3)

else:
return 0

def assemble_HF_matrix(self):
"""
Assemble the HF matric from the coefficient matrix.
"""
n, N = self.n, self.N
C = self.C

for a in range(n):
for g in range(n):

s = self.h_0(a,g)
for p in range(N):

for b in range(n):
for d in range(n):

s += C[p,b]*C[p,d]*self.h_1(a,b,g,d)

self.h_HF[a,g] = s.subs(Z, self.Z_value)

def reorder_coefficients(self):
ek, C = self.ek, self.C

# Sort eigenvalues and coefficient matrix using numpy.argsort
indices = argsort(ek)
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ek = ek[indices]
C = C[:, indices]

self.ek, self.C = ek, C.T

def calc_energy(self):
"""
Calculates the ground state energy from the
current coefficient matric.
"""
n, N = self.n, self.N
C = self.C

e = 0
for p in range(N):
for a in range(n):

for b in range(n):
e += C[p,a]*C[p,b]*self.h_0(a,b)
for q in range(N):
for c in range(n):
for d in range(n):
e += 0.5*C[p,a]*C[q,b]*C[p,c]*C[q,d]*self.h_1(a,b,c,d)

self.E = e.subs(Z, Z_value).evalf()
return self.E

def solve(self, tol=1e-6, max_iters=40):
iterations = 0
n, N = self.n, self.N
Ep = 0
ekp = array((0,0,0,0,0,0))

while iterations < max_iters:
iterations +=1

# Find eigenvalues and eigenvector of HF matrix
self.ek, self.C = linalg.eig(self.h_HF)

# Reorder eigenvalues and eigenvector
self.reorder_coefficients()

# Assemble the new HF matrix
self.assemble_HF_matrix()

# Test tolerance of lowest eigenvalue
print self.calc_energy()
error = sum(abs(ekp - self.ek[0]))
if error < tol:

print "Solver converged after %d iterations." % (iterations)
return

Ep = self.E
ekp = self.ek[0]

print "Solver failed to converge in %d iterations." % (iterations)

N = 4
Z_value = 4
basis = [(1,1), (1,-1), (2,1), (2,-1), (3,1), (3,-1)]
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print "Solving with initial guess C=I."
solver = HF(N, basis, Z_value, first_C=’identity’)
solver.solve(max_iters=100)

print "\n\n\n Solving with initial guess C=0."
solver = HF(N, basis, Z_value, first_C=’zero’)
solver.solve(max_iters=100)

print "\n\n\n Solving with random initial guess."
solver = HF(N, basis, Z_value, first_C=’rand’)
solver.solve(max_iters=100)

We conclude by listing the matrix elements for the radial integrals to be used
for the direct part and the exchange part. Note again that these integrals do
not include spin. The nomenclature is 1 = 1s, 2 = 2s, and 3 = 3s, with no spin
degrees of freedom.
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Element Expression as function of charge Z
〈11|v̂|11〉 = (5*Z)/8
〈11|v̂|12〉 = (4096*Sqrt[2]*Z)/64827
〈11|v̂|13〉 = (1269*Sqrt[3]*Z)/50000
〈11|v̂|21〉 = (4096*Sqrt[2]*Z)/64827
〈11|v̂|22〉 = (16*Z)/729
〈11|v̂|23〉 = (110592*Sqrt[6]*Z)/24137569
〈11|v̂|31〉 = (1269*Sqrt[3]*Z)/50000
〈11|v̂|32〉 = (110592*Sqrt[6]*Z)/24137569
〈11|v̂|33〉 = (189*Z)/32768
〈12|v̂|11〉 = (4096*Sqrt[2]*Z)/64827
〈12|v̂|12〉 = (17*Z)/81
〈12|v̂|13〉 = (1555918848*Sqrt[6]*Z)/75429903125
〈12|v̂|21〉 = (16*Z)/729
〈12|v̂|22〉 = (512*Sqrt[2]*Z)/84375
〈12|v̂|23〉 = (2160*Sqrt[3]*Z)/823543
〈12|v̂|31〉 = (110592*Sqrt[6]*Z)/24137569
〈12|v̂|32〉 = (29943*Sqrt[3]*Z)/13176688
〈12|v̂|33〉 = (1216512*Sqrt[2]*Z)/815730721
〈13|v̂|11〉 = (1269*Sqrt[3]*Z)/50000
〈13|v̂|12〉 = (1555918848*Sqrt[6]*Z)/75429903125
〈13|v̂|13〉 = (815*Z)/8192
〈13|v̂|21〉 = (110592*Sqrt[6]*Z)/24137569
〈13|v̂|22〉 = (2160*Sqrt[3]*Z)/823543
〈13|v̂|23〉 = (37826560*Sqrt[2]*Z)/22024729467
〈13|v̂|31〉 = (189*Z)/32768
〈13|v̂|32〉 = (1216512*Sqrt[2]*Z)/815730721
〈13|v̂|33〉 = (617*Z)/(314928*Sqrt[3])
〈21|v̂|11〉 = (4096*Sqrt[2]*Z)/64827
〈21|v̂|12〉 = (16*Z)/729
〈21|v̂|13〉 = (110592*Sqrt[6]*Z)/24137569
〈21|v̂|21〉 = (17*Z)/81
〈21|v̂|22〉 = (512*Sqrt[2]*Z)/84375
〈21|v̂|23〉 = (29943*Sqrt[3]*Z)/13176688
〈21|v̂|31〉 = (1555918848*Sqrt[6]*Z)/75429903125
〈21|v̂|32〉 = (2160*Sqrt[3]*Z)/823543
〈21|v̂|33〉 = (1216512*Sqrt[2]*Z)/815730721
〈22|v̂|11〉 = (16*Z)/729
〈22|v̂|12〉 = (512*Sqrt[2]*Z)/84375
〈22|v̂|13〉 = (2160*Sqrt[3]*Z)/823543
〈22|v̂|21〉 = (512*Sqrt[2]*Z)/84375
〈22|v̂|22〉 = (77*Z)/512
〈22|v̂|23〉 = (5870679552*Sqrt[6]*Z)/669871503125
〈22|v̂|31〉 = (2160*Sqrt[3]*Z)/823543
〈22|v̂|32〉 = (5870679552*Sqrt[6]*Z)/669871503125
〈22|v̂|33〉 = (73008*Z)/9765625
〈23|v̂|11〉 = (110592*Sqrt[6]*Z)/24137569
〈23|v̂|12〉 = (2160*Sqrt[3]*Z)/823543
〈23|v̂|13〉 = (37826560*Sqrt[2]*Z)/22024729467
〈23|v̂|21〉 = (29943*Sqrt[3]*Z)/13176688
〈23|v̂|22〉 = (5870679552*Sqrt[6]*Z)/669871503125
〈23|v̂|23〉 = (32857*Z)/390625
〈23|v̂|31〉 = (1216512*Sqrt[2]*Z)/815730721
〈23|v̂|32〉 = (73008*Z)/9765625
〈23|v̂|33〉 = (6890942464*Sqrt[2/3]*Z)/1210689028125
〈31|v̂|11〉 = (1269*Sqrt[3]*Z)/50000
〈31|v̂|12〉 = (110592*Sqrt[6]*Z)/24137569
〈31|v̂|13〉 = (189*Z)/32768
〈31|v̂|21〉 = (1555918848*Sqrt[6]*Z)/75429903125
〈31|v̂|22〉 = (2160*Sqrt[3]*Z)/823543
〈31|v̂|23〉 = (1216512*Sqrt[2]*Z)/815730721
〈31|v̂|31〉 = (815*Z)/8192
〈31|v̂|32〉 = (37826560*Sqrt[2]*Z)/22024729467
〈31|v̂|33〉 = (617*Z)/(314928*Sqrt[3])
〈32|v̂|11〉 = (110592*Sqrt[6]*Z)/24137569
〈32|v̂|12〉 = (29943*Sqrt[3]*Z)/13176688
〈32|v̂|13〉 = (1216512*Sqrt[2]*Z)/815730721
〈32|v̂|21〉 = (2160*Sqrt[3]*Z)/823543
〈32|v̂|22〉 = (5870679552*Sqrt[6]*Z)/669871503125
〈32|v̂|23〉 = (73008*Z)/9765625
〈32|v̂|31〉 = (37826560*Sqrt[2]*Z)/22024729467
〈32|v̂|32〉 = (32857*Z)/390625
〈32|v̂|33〉 = (6890942464*Sqrt[2/3]*Z)/1210689028125
〈33|v̂|11〉 = (189*Z)/32768
〈33|v̂|12〉 = (1216512*Sqrt[2]*Z)/815730721
〈33|v̂|13〉 = (617*Z)/(314928*Sqrt[3])
〈33|v̂|21〉 = (1216512*Sqrt[2]*Z)/815730721
〈33|v̂|22〉 = (73008*Z)/9765625
〈33|v̂|23〉 = (6890942464*Sqrt[2/3]*Z)/1210689028125
〈33|v̂|31〉 = (617*Z)/(314928*Sqrt[3])
〈33|v̂|32〉 = (6890942464*Sqrt[2/3]*Z)/1210689028125
〈33|v̂|33〉 = (17*Z)/256
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