High-momentum components
In the nuclear symmetry
energy

=|[sospin dependence of the NN-interaction and Symmetry energy
*Momentum distributions and NN-correlations.

=Single particle spectral functions .

»Tensor contribution to the symmetry energy.

*High momentum components in the nuclear symmetry energy.




NN-interactions act differently in symmetric nuclear matter than in
neutron matter. A “measure” of this isospin dependence is provided
by the symmetry energy.

Charge symmetry of nuclear forces :> Only even powers

Charge symmetry Z?Panaion of (E/A) s, 0N even powers
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Taylor expansion of the energy per particle of symmetric nuclear matter
around the saturation density.
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The behavior of the symmetry energy around saturation can be also
characterized in terms of a few bulk parameters.
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Combining the precedent expansions, one can predict the existence of a
saturation density, i.e., a zero pressure condition, for a given asymmetry and
rewrite the energy per particle of asymmetric matter around the new saturation
density

Kol3) — 2 (f — 3
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Isospin asymmetry dependence of the saturation density, energy per
particle and incompressibility coefficient at the saturation point of
asymmetric nuclear matter.

Solid lines show the results of the exact BHF calculations whereas
dashed lines Indicates the results of the previous expansion.



All quantities in MeV, except the density

Model 0 Eo Ko QoEem L Kgm Qsym K- Ref.

BHF (with TBFa) 0.187 -15.23 195.5 -280.9 34.3 66.5 -31.3 -112.8 -334.7
BHF (with TBFb) 0.176 -14.62 185.9 -224.9 33.6 66.9 -23.4 -162.8 -343.8

BHF (without TBF) 0.240 -17.30 213.6 -225.1 35.8 63.1 -27.8 -159.8 -339.6

SLy4 0.159 -15.97 229.8 -362.9 31.8 45.3 -119.8 520.8 -320.4 [8]
SLy10 0.155 -15.90 229.7 -358.3 32.1 39.2 -142.4 590.9 -316.7 [9]
SLy230a 0.160 -15.98 229.9 -364.2 31.8 43.9 -98.4 602.8 -292.7 [10]
Skl4 0.162 -16.15 250.3 -335.7 29.6 59.9 -43.4 358.8 -322.5 [37]
SkI5 0.156 -15.84 255.6 -301.7 36.4 128.9 159.8 11.2 -461.6 [37]

SkI6 0.159 -15.88 248.2 -326.7 34.4 82.1 -0.9 332.3 -385.8 [3§]



BHF aPmeimatiﬂn of ANM

) Enargy per Particle

: —(pﬁ}——}t)E(ﬁzF %Ra[ut{i:'}]]

. Bethe-Goldstone Equati-:::-n

. _ Y,
G(w) V+Vm—E—Er+iﬂG(m)

zm, +Re|U, (k)]

= UMO-F Y (H'|G[m _E.(k)+ E,.(k']}FE')‘

&

Infinite sumation of two-hole
line diag*am&

Partial sumation of PP ladder diagamﬁ

v Pauli I:-LDckjng

v Nucleon dreﬁsing



Neutron matter with the simplest Skyrme force

1
V= Z to + 6t3ﬁ )o(r; — 175)

1<J

The two-body matrix element:

— — - — - g 1 3
(kimsy, kamgo | vi2 | kimsi, kamga —komga, k1mgr) = ﬁ(t0+€p7)(1—5mslmsg)

Summing up all the matrix elements as we did for nuclear matter we get

(prs |V | ors) 1 ts 1
— D o(fa 4 B2
N 2/0(0+6P)2

The total energy per particle:

h* 3 1
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The energy per particle for nuclear matter

h? 3 32

1 ts 3
5= (520 Salte + 207)5

2 6)4

esnm(p) =

Then the symmetry energyas a function of the density calculated as the
difference between the energy per particle of pure neutrén matter
and symmetric nuclear matter is given by

he 3 1 1
oo = —— 2 (3w2)2/3,2/3 |1 — (Z)2/3] — = 'y_
Esym = 3 5(#) p (5) 20(0+ p)

p=0.16 fm™? we have egym, = 25.7 MeV

with tg,m = 12.9 MeV and vgy, = 12.7 MeV
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Symmetry energy decomposed in the kinetic and potential
Contributions.

esym = 25.7 MeV at p =0.16 fm~>



By construction, mean field calculations, with effective interactions,
do not give access to the high-momentum components.
Their associated n(k) are just uncorrelated step-functions.

BHF provides the energy correction to the non-interacting system
(free Fermi sea) but do not provide the separate contributions of
the kinetic energy and potential energy in the correlated many-body
State.

We have observed the isospin dependence, either of the effective
Interactions or of the realistic interactions looking at the results
(mean field and BHF) for nuclear and neutron matter.

A new insight of the importance of correlations can be provided by
analyzing the kinetic and potential energy contribution to the symmetry
energy and the contribution of the difference components of the potential

I Can we do that in the BHF framework? I




How high-momentum components produced
by NN-correlations affect the symmetry energy?

If correlations are measured by the departure of n(k)
from the step function. Which system is more correlated
nuclear matter or neutron matter ? How are the the
momentum distributions of asymmetric nuclear matter?

Which components of the interaction are responsible
for the symmetry energy?




Correlation effects on n(p) for nuclear matter.

Units. Energy in Mev and lengths in fm

Depletion rather constant below the Fermi momentum. Around 15 per cent

kr =136 fm™' p=20.16 fm™3

1.0

Ly ~07
0.8 |— \-l
(T) ~ 43 MeV
;N 06 —
0.4 —
Depletion below the Fermi momentum. 0.2 —
High momentum components in the
correlated wave function. 0.0 | & |
0 1 2 8 4
We will explore how the isospin dependence is p (fm~1)

reflected in the correlated nature of n(k).



The Hellmann-Feynman theorem in conjunction with BHF can be
used to estimate the “true” kinetic energy.

Hellmann-Feynman theorem:
Consider a Hamiltonian depending on a paremeter

et

- dH
iz, )
dA <1.U,a "'P.:L >

The nuclear Hamiltonian can be decomposed ﬁf _ ,j;, 1}
In a kinetic and a potential Energy pieces: =1+

Defining a A depending Hamiltonian: H. =T+ \V

The expectation value of the ~
potential energy <V

A

1



For Avl8+Urbana IX three-body force at

saturation density

The kinetic contributionto E,, .,

Sy Ed | Em L
<T> | 53.321 | 54294 | -0.973 | 14.896
<V> |-34.251 | -69.524 |35.273 | 51.604
Total | 19.070 | -15.230 | 34.300 | 66.500

pp = 0.187 fm—*

The major contribution to both E_

and L is due to the potential energy

Is very small and negative

In contrast, the FFG approach to the symmetry energy is ~ 14.4 MeV.
The contribution of the kinetic energy to L is smaller than the FFG

which amounts ~29.2 MeV

Ereo(SM) = 24.53 MeV, T(SM) - EFFG(SM) =29.76 MeV

Ereg(NM) = 38.94 MeV, T(NM) - EFFG(NM) =14.38 MeV



(S, 7)) Enm  Esm  Esgym L
(0,0) 0 5.600 —5.600 —21.457
(0,1) —29.889 —23.064 —6.825 —17.950
(
(1,

1,0) 0 —49.836 49.836 90.561
1,1) —4.362 —2.224 —2.138  0.450

TABLE III: Spin (S) and isospin (T) channel decomposition
of the potential part of Enar, Esvm, Esym and L. Units are
given i MeV.

Similar T=1 channel contributions
to E, and to Eg,, which almost cancel
outin Eg,



TABLE 1. Deuteron D-state probability Pp. quadrupole moment Qg (in fm?), total binding energy. kinetic and potential energy, and their
decomposition in partial waves, for different potentials. All energies are given in MeV.

Force Pp (%) Q4 E T V Ts To Vs Vi 2Vsp
Vis 5.78 0.27 —2.24 19.86 —22.10 11.30 8.56 —3.95 0.77 —18.91
Vg 5.78 0.27 —-2.24 19.86 —22.10 11.30 8.56 —3.95 0.77 —18.91
Vi 5.33 0.27 —-2.24 18.70 —20.94 11.38 7.32 —4.68 1.38 —17.64
v, 0.00 0.00 —2.24 11.41 —13.65 11.41 0.0 —13.65 0.0 0.0
Ve 4.64 0.30 —1.46 14.96 —16.42 9.10 5.86 —3.43 1.14 —14.14

Ty — <351 T 3 S1) The binding in the deuteron is also the

result of a strong cancelation between
Tp = (D, | T |° D1) the potential and the kinetic energy.
3 3
Vo= (>S1 |V |°S1)

Vp={3Dy |V [P Dy)
Vep = (°S1 |V |? D)



Partial wave  Ewyu Esy  Eoym L
180 —23.070 —19.660 —3.410 —3.450
38 0 —45.810 45.810 T1.855
1P, 0 4.904 —4.904 —18.601
23 ~5.321 —4.029 —1.292 —1.808
Py 16.110  10.720 5.390 21.949
Py —16.000 —9.334 —6.666 —21.168
1Dy —5.956 —3.201 —2.755 —11.033
Iy 0 098] —0.981 —3.739
e 0 —3.082 3.082 16.601
e 0 —0.798 0.798  4.805
'Fs 0 0.694 —0.604 —3.348
3y —0.695 —0.229 —0.466 —1.799
g 2000 0821 1.179  4.883
i, —0.796 —0.194 —0.602 —3.239
gey —0.812 —0.247 —0.565 —3.036
30 0 —0.001 0.001  0.441
3Gy 0 —0.213 0213  0.449
05 0 —0057 0057 0.650
1H- 0 0029 —0.0290 0.107

0.040
—0.033
0.034
0.023
—0.029
0067
—0.021
—0.027
0.020
— (.06
0.014
0.021
—0.011
0038
0.006

—0.007
0.258
0.009

—0.105
0.0:29

—0.067
0.021
0.027
0.024

—0.002
0.022
0.010
0.011

—0.04358
0.015

0.232
0.968
0.144
—0.591
0.342
—0.819
0.239
0.385
0.283
—0.313
0.242
0.169
0.138
—0.491
0.166

3S, wave gives the larger contribution to the symmetry energy and L

Large cancellations between the other partial waves.



v Main contribution
from 353D, p-w. (not
present in NM)



Exy  Esy  E.ym L
(V1) ~31.212 —32.T10 1.498 —5.580
(Ve5,) —4.957  3.997 —8.054 —20.383
(Va,.z,) ~0.319 —0.382 0.063  2.392
(Viges)mer))  —5.724 —11.388  5.664 2,521
(Vi) ~0.792  1.912 —2.704 —4.998
Vsytm9) —4.989 —37.592 32.603 47.095
Vi.z) —7.538 —1.754 —5.784 —12.251
(Vi-ser7,) —2.671 —6.530 3.868  3.069
(Vi2) 11.850 13.610 —1.760  1.521
(Vizg,7) —2.788  0.270 —3.058 —14.262
(Viagz,.z,) 1.265  1.383 —0.118  1.405
(Viags,a,)705)) 0051 0.008 0043 —0.341
Vii.52) 4194 5682 —1.488 —0.327
Vit s250m) 5160 —6.190 11.359 31.368
(Vr,) 0.003 0039 —0.036 —0.022
(Vig,-3,)T, ) —0.017 —0.106 0.089  0.042
(VsyyToy) 0.004 0079 —0.075 —0.124
(Virzgtrs,)) ~0.084 —0.001 —0.083 —0.331
(L) 2985  3.251 —0.266 —0.630
(Ulzy-a,)0707)) 2254  3.999 —1.745 —T.228
(Us,, (7-7,)) —0.835 —T7.092 6.157 27.768

Separate contributions from

the various components of

Av18 and the two-body reduced
Urbana force. All energies in MeV

The largest contribution is

from the tensor component



Up to now, we have consider only an integrated property of n(k), i.e., the kinetic
energy now we want to look in more detail on n(k). To this end we will use
the single-particle propagator.

The Single particle propagator a good tool to study single particle properties

Not necessary to know all the details of the system ( the full many-body
wave function) but just what happens when we add or remove a particle
to the system.

It gives access to all single particle properties as :

= momentum distributions

= self-energy ( Optical potential)
= effective masses

= spectral functions

Also permits to calculate the expectation value of a very special two-
body operator: the Hamiltonian in the ground state.




Typical behavior of n(k) as a function of temperature
for the ideal Bose and Fermi gases. n(k) is affected
by statistics and temperature.

T>>T, P

The effects of quantum statistics
become dominant below a
characteristic temperature Tc.

]
/

T>Tc T T

n(p) Macroscopic occupation of
the zero momentum state for

Bose systems.

/

o

~

T<T, T<T,

Discontinuity of n(k) at the Fermi
surface at T=0.

T T < T,
n(p) é(p)

//”

P



Typical behaviour of the momentum distribution and the

one-body density matrix in the ground state for interacting
Bose and Fermi systems

pl(’l?l,ﬂ) = N/d3T2..d3TN\IJ*(F1,F2, ..7FN)\II('F§_7F2; ..,FN)
n(p) = ([ alay | W) n(p) = v [ pi(r)e T

n(p) — Nnoé'ﬁo + n’ (p) BOSE £LUID \ NORMAL FERMI FLUID
1.0p----==mmm
= I
/ mc 1 E C \'

n(p—>0) N?’L()?— =t 1z ke

p i

0 "K =

p 0 1 2
1.0 BOSE FLUID FERMI FLUID

r1.0
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Liquid 3He is a very correlated Fermi liquid.

Large depletion

Units : Energy (K) and length (A)

kp = 0.789A47! e

8 ]
T +4+<+ LB :
EF - 3K : w2z GFMC 4
b 12K 0.4 : 006 FHNC —
k™ i '-+ :
g =—-20K = : ._; :
Ty = 0.275 S :
(1—n(0)) ~ 0.5 - :
0.0 R
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n(p) for nuclear matter.

Units. Energy in Mev and lengths in fm

Depletion rather constant below the Fermi momentum. Around 15 per cent

kr =136 fm™' p=20.16 fm™3

1.0

Zyon ~ 0.7

b— — —
—
- —

0.8 ——N
(T) ~ 43 MeV

<T>FFG ~ 23 MeV

u(p)

0.2 —

0.0 | gi‘ |




Lehmann representation + Spectral functions

FT+ clossure => Lehmann representation

/
k,w / dw’ / dw )
" or W — w —|— m — W =1
o~ B(Em—pNm)
A< (k,w) =27 Z = (U, | ax | ©,) |? 0(w — (E,, — E,))
S e /6(Em_l-LNm) ; 5
A (kvw):%TZ A | (W | ay | U) |° 0(w — (B — E)))

The summation runs over all energy eigenstates and all particle number eigenstates



The spectral function

Ak,w) = A(k,w) + A (k,w)

with

A7 (k,w) = P WAk, w)

where

flw) = {eﬂ(w—u) + 1}_1

and A7 (k,w)=Ak,w)(1 - f(w))

Momentum distribution

1

therefore

A% (k,w) = A(k,w) f()

Is the Fermi function

T=0 MeV n(k, T =0) = %fFAh(k,w)dw
i k. T) = o [~ A kwdo = [~ Alk.w)f()
Finite T ni\r, ~or ) y W w_27r . W) J\W




How to calculate the energy

Koltun sum-rule

2m

d d3 © dwl [ k?
“O5 [ i L o3 (a0 +e) AR

A (k,w) = 6(w — 271 (k))

inthe BHF 77 ()

- Is the BHF quasi-particle energy

Does not include propagation of holes
The momentum distribution is
obtained by convoluting the | N
spectral function with a Fermi 'T?-Ui) — 2 A( )f( T)
Dirac factor. /I

Calculations are performed at finite T to avoid pairing instabilities.
NO THREE-BODY forces are included.



Symmetric Nuclear Matter, T=10 MeV
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range.
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T =5 MeV

— SCGF p=0.16 fm™®
15 — SCGF p=0.32 fm®
—= BHF p=0.16 fm™®
—— BHF p=0.32 fm™

10—

E/A [MeV]

Dependence of the energy per nucleon as a function of the asymmetry square

Linear behavior! Justifies quadratic expansion both for BHF and SCGF.

Repulsive effects of the propagation of holes. Smaller for neutron matter
than for nuclear matter.
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10

K=0 MeV, neutron spectral function for different asymmetries. For CDBONN.
The tail of the spectral function at high-energy gets lower. Indicating a
decrease of the tensor correlations when the asymmetry increases and

the neutrons see less protons.
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As the asymmetry increases, the Fermi momentum for protons gets closer
to zero and therefore the spectral functions gets narrower.

However, the high energy tails increase due to the tensor and short
Range correlations. The protons see many neutrons.



0,8

0,2

Proton and neutron momentum distributions rho=0.16 fm-3

CDBONN

— SCGF - Neutron
— SCGF - Proton
- = BHF - Neutron
—— BHF - Proton

v'The BHF n(k) do not contain
correlation effects and very
similar to a normal thermal
Fermi distribution.

v'The SCGF n(k) contain
thermal and correlation
effects.

v'Depletion at low momenta
and larger occupation than the
BHF n(k) at larger momenta.

v'The proton depletion is
larger than the neutron
depletion.
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Momentum distributions for symmetric nuclear matter

At T=5 MeV , for FFG k<kF, 86 per cent of the particles! and 73 per cent at
T=10 MeV. In the correlated case, at T=5 MeV for k< kF, 75 per cent and 66
per cent at T= 10 MeV.

0=0.16 fm™, T=5 MeV  p=0.16 fm", T=10 MeV

e
I
e

2 2
P — AvI8] [ — Avig 1 5
S 03 FFG FFG 108
=3a =
= - 1 &
£ 06 - ~0.6 &
S . 1 S
0.4 - 0.4
g 0.2 - 0.2 g
§ 0 I | I | KJ—; ; | | ~ | | 0 §
0 05 1 15 2 0 05 1 15 2
Momentum, k/kF Momentum, k/kF

At low T (T=5 MeV), thermal effects affect only the Fermi surface.

At large T, they produce also a depletion. The total depletion (around 15 per cent)
can be considered the sum of thermal depletion (3 per cent) and the depletion
associated to dynamic correlations.



Neutron and proton momentum distributions for different asymmetries

The less abundant component ( the protons) are very much affected by
thermal effects.

p=0.16 fm > and T =5 MeV

Momentum, k [MeV]
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c . . . . . . . . . .

= 1 _.\.\'. ~| < o B=o.|o— - B=o!o—1

.8 B N, | '\‘\ ....... B=02 1 BTN B=02 -

208 BTN B=0.4" =040

506l V| B0.6 == B=0.6_

;_g 0.6 ] \‘\ ‘-__‘ '-.___ ‘.\ 3=0.8 | _ '\_\ B=0.8 | 0

g 0-4__ “-\ "'-.__ "'-___ \'\_ Neutrons :‘__ \\ Neutrons 7 0

g 0'2__ Protons ‘\‘\. \‘\_ ] [ Protons ‘\-\ ".\ _ 0
T IR BT VS h N S T I R D).

§ OO 100 200 300 400 500 0O 100200 300 400 500 0

Momentum, k [MeV]

b A~ o oo
Momentum distribution, n(k)



Momentum distributions of symmetric and neutron matter at T=5 MeV

High-momentum tails increase with density (Short-range correlations)

Argonne v18 T=5 MeV
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Av18 CD-Bonn N3LO Avd’
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High-momentum components change very little whit isospin.
This suggest that, when the momentum distribution is normalized

to unity, high-momentum components are basically determined by
the total density of the system.
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n(k) for neutron matter

Argonne V18
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Occupation of the lowest momentum state as a function of density for
neutron matter.
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Dependence of n(k=0) on the asymmetry

0=0.16 fm~, T=5 MeV

l——t——— —
O°95__ Neutrons /*”;—:—2
—~ 0.9 -
T
= 0.85 -
= Protons
0.8 -

- —eo Av]8
0.75F ®«--*« CDBONN
i FFG

! I ! I ! I !
0 02 04 06 0.8
Asymmetry, [3




nn(k=ﬂj-np[k =())

0.25

=
b

=
-
n

&~
[a—

0.05

p=0.16 fm™, T=5 MeV

p=0.32 fm",

T=5 MeV

. ———a AvIS

| & ———-# CDBonn
& ———-# Reid?3 s
- ——8 AvE’ /
—8—--—- -8 AvE’ e
| & -——--e Avd’ s
FFG .= /
e ¢
I."
_.

| 1 I 1 I 1
0.2 04 06 08
Asymmetry, o

1

= '*'_"_'* ~

0

0.2 [}4 EIE- {]S
Asymmetry, O



n(k=0) for nuclear and neutron matter,

p=0.16 fm™> and T' = 5 MeV

Interaction Symmetric Neutron : :
Neutron matter is systematically

CDBONN 0.891 0.972 less depleted

Reid93 0.872 0.962
Argonne v18  0.872 0.957
Argonne v8’ 0.863 0.956
Argonne v6’ 0.879 0.964
Argonne v4’ 0.946 0.971

FFG 0.9993 0.999991
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Contributions of different momen-
tum regions to the total density
(columns 3 and 6) , kinetic (4 and 7,
in MeV ) and total energies (5 and 8,
in MeV) for SNM (columns 3,4 and 5)
and PNM (columns 6,7 and 8) with
different NN interactions.

The FFG case is also included.

All results are computed at

rho=0.16 fm== and T=5 MeV
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Importance of the high momentum components
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p=0.16 fm . T=5 MeV
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Nijl |27.4 4.6 22.8 48.5
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Total, kinetic and potential contributions in MeV to the symmetry energy.
At rho=0.16 fm-3and T=5 MeV for different NN interactions.

The difference in total kinetc energy of PNM and SNM is smaller for the
correlated case tan for the FFG

The symmetry energy is dominated by the potential energy
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energy at T=5 (T=0) MeV. NO THREE-BODY FORCE.



Summary

s At the same density, neutron matter is less correlated than nuclear matter,
in the sense that n(k) is less depletted. The variation of kinetic energy
respect to the FFG is smaller for neutron matter than for nuclear matter.

*The kinetic symmetry energy is very small (compared with the FFG) and
could be even negative. The potential part of the symmetry energy is very
large. The main contribution coming from the tensor part of the NN
interaction and the partial waves were the tensor is acting.

*The kinetic and the potential energy have a quadratic dependence on the
asymmetry paremeter.

The BHF values for the symmetry energy and L ( calculated with the Av18
and a Urbana IX three-body force are compatible with the experimental
determinations.

sImportant interplay between thermal and dynamical correlation effects. For
a given temperature and decreasing density, the system approaches the
classical limit and the depletion of n(k) increases. Not to confuse with
correlation effects.

“*Three-body forces should not change the qualitative behavior of n(k).



Present and future work ( uniform infinite systems)

Three-body forces. How should be incorporated?

Present strategy for uniform systems: Average the interaction
over one particle to get a density dependent two-body force.
One should do that very carefully to respect the antisymmetry.
Also necessary: Perform a three-hole line calculation with the
explicit use of three-body forces.

Response functions of neutron and nuclear matter.

The depletion and spreading of the strength of the single particle
states should be reflected in the quenching and spreading of the
response. Already at the level of the dressed Lindhard function.

Work out the two-body correlations (distribution functions) from the
two-body propagator. That it is also necessary for the average of the
three-body forces.

Go beyond ladder approximation. To include long-range correlations.
RPA with dressed ph-propagators.

Pairing!

Applications to nuclear star physics. Beta-stable matter. Hyperons.
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