
High-momentum components 

in the nuclear symmetry 

energy

Isospin dependence of the NN-interaction and Symmetry energy

Momentum distributions and NN-correlations.

Single particle spectral functions .

Tensor contribution to the symmetry energy.

High momentum components in the nuclear symmetry energy.



NN-interactions  act differently  in symmetric nuclear matter than in 

neutron matter.  A “measure” of this isospin dependence is provided

by  the symmetry energy. 

Charge symmetry of nuclear forces  Only even powers



Taylor expansion of the energy per particle of symmetric nuclear matter

around the saturation density.



The behavior of the symmetry energy around saturation can be also 

characterized in terms of a few bulk parameters.



Combining the precedent  expansions, one can predict the existence of a 

saturation  density, i.e., a zero pressure condition, for a given asymmetry and 

rewrite the  energy per particle of asymmetric matter around the new saturation 

density



Isospin asymmetry dependence of the saturation density, energy per

particle and incompressibility coefficient at the saturation point of

asymmetric nuclear matter.

Solid lines show the results of the exact BHF calculations whereas 

dashed lines Indicates the results of  the  previous expansion.



All quantities in MeV, except the density 





Neutron matter with the simplest Skyrme force

The two-body matrix element:

Summing up all the matrix elements as we did for nuclear matter we get

The total energy per particle:



The energy per particle for nuclear matter 

Then the symmetry energyas a function of the density calculated as the 

difference between the energy per particle of pure neutrón matter

and symmetric nuclear matter is given by



Energy of neutron and nuclear matter



Symmetry energy decomposed in the kinetic and potential 

Contributions.



By construction, mean field calculations, with effective interactions,

do not give access to the high-momentum components. 

Their associated n(k) are just  uncorrelated step-functions.

BHF provides the energy correction to the non-interacting system

(free Fermi sea) but do not provide the separate contributions of

the kinetic energy and potential energy in the correlated many-body

state.

We have observed the isospin dependence, either of the effective

interactions or of the realistic interactions looking at the results

(mean field and BHF) for nuclear and neutron matter.

A new  insight of the importance of correlations can be provided by 

analyzing the kinetic and potential energy contribution to the symmetry

energy and the contribution of the difference components of the potential

Can we do that in the BHF framework?



How  high-momentum components produced

by NN-correlations affect the symmetry energy?

If correlations are measured by the departure of n(k) 

from the step function. Which system is more correlated

nuclear matter or neutron matter ? How are the the

momentum distributions of asymmetric nuclear matter?

Which components of the interaction are responsible

for  the symmetry energy? 



Correlation effects on n(p) for nuclear matter. 

Units. Energy in Mev and lengths in fm

Depletion rather constant below the Fermi momentum. Around 15 per cent

Depletion below the Fermi momentum.

High momentum components in the

correlated wave function.

We will explore how the isospin dependence is

reflected in the correlated nature of n(k).



The Hellmann-Feynman theorem in conjunction with BHF can be 

used to estimate the  “true”  kinetic energy.

Hellmann-Feynman theorem:

Consider a Hamiltonian depending on a paremeter 

The nuclear Hamiltonian can be decomposed 

in a kinetic and a potential Energy pieces:

Defining a  depending Hamiltonian: 

The expectation value of the

potential energy 



For Av18+Urbana IX three-body force at 

saturation density

The major contribution to both

and L is due to the potential energy

The kinetic contribution to is very small and negative

In contrast,  the FFG  approach to the symmetry energy is ~ 14.4 MeV.

The contribution of the kinetic energy to L is smaller than the FFG 

which amounts ~29.2 MeV

EFFG(SM) = 24.53 MeV,    T(SM) - EFFG(SM) =29.76  MeV

EFFG(NM) = 38.94 MeV,    T(NM) - EFFG(NM) =14.38  MeV



Largest contributions from

S=1, T=0 channel which is not

present in neutron matter. Similar T=1 channel contributions

to ENM and to ESM which almost cancel

out in Esym



The binding in the deuteron is also the

result of a strong cancelation between

the potential and the kinetic energy.



3S1 wave gives the larger contribution to the symmetry energy and L 

Large  cancellations between the other partial waves.





Separate contributions  from 

the various components of 

Av18 and the two-body reduced

Urbana force.  All energies in MeV

The largest contribution is 

from the tensor component



The Single particle propagator a good tool to study single particle properties

Not necessary to know all the details of the system ( the full many-body 

wave function) but just what happens when we add or remove a particle 

to the system.

It gives access to all single particle properties as :

 momentum distributions

 self-energy  ( Optical potential)

 effective masses

 spectral functions

Also permits to calculate the expectation value of a very special two-

body operator: the Hamiltonian in the ground state. 

Up to now, we have consider only an integrated property of n(k), i.e., the kinetic

energy now we want to look  in more detail on n(k). To this end we will use

the single-particle propagator.



Typical behavior of n(k) as a function of temperature

for the ideal Bose and Fermi gases. n(k) is  affected

by statistics and temperature.

The effects of quantum statistics

become dominant below a 

characteristic temperature Tc.

Macroscopic occupation of 

the zero momentum state for

Bose systems.

Discontinuity of n(k) at the Fermi

surface at T=0 .



Typical behaviour of the momentum distribution and the 

one-body density matrix in the ground state for interacting

Bose and Fermi systems



Liquid 3He is a very correlated Fermi liquid.

Large depletion

Units : Energy (K) and length (A) 



n(p) for nuclear matter. 

Units. Energy in Mev and lengths in fm

Depletion rather constant below the Fermi momentum. Around 15 per cent



Lehmann representation + Spectral functions

FT+ clossure => Lehmann representation

The summation runs over all energy eigenstates and all particle number eigenstates



The spectral function 

with therefore

where Is the Fermi function

and

Momentum distribution

T=0 MeV

Finite T



How to calculate the energy

Koltun sum-rule

is the BHF quasi-particle energy

Does not include propagation of holes

The momentum distribution is

obtained by convoluting the 

spectral function with a Fermi

Dirac factor.

Calculations are performed at finite  T to avoid pairing instabilities.

NO THREE-BODY forces are included.

In the BHF



Tails extend to the high energy

range.

Quasi-particle peak shifting with

density.

Peaks broaden with density.



Dependence of the energy per nucleon as a function of the asymmetry square

Linear behavior!  Justifies quadratic expansion both for BHF and SCGF.

Repulsive effects of the propagation of holes. Smaller for neutron matter

than for nuclear matter.



K=0 MeV, neutron spectral function for different asymmetries. For CDBONN.

The tail of the spectral function at high-energy gets lower.  Indicating a

decrease of the tensor correlations when the asymmetry increases and 

the neutrons see less protons.



As the asymmetry increases, the Fermi momentum for protons gets closer

to zero and therefore the spectral functions gets narrower.

However, the high energy tails increase due to the  tensor and short

Range correlations. The protons see many neutrons.



Proton and neutron momentum distributions  rho=0.16 fm-3

The BHF  n(k) do not contain 

correlation effects and very 

similar to a normal thermal 

Fermi distribution.

The SCGF n(k) contain 

thermal  and  correlation 

effects.

Depletion at low momenta 

and larger occupation than the 

BHF n(k) at larger momenta.

The proton depletion is 

larger than the neutron 

depletion. 

CDBONN



Momentum distributions for symmetric nuclear matter

At T= 5 MeV , for FFG  k<kF,  86 per cent of the particles!  and 73 per cent at 

T=10 MeV. In the correlated case, at T=5 MeV for k< kF,  75 per cent and 66 

per cent at T= 10 MeV.

At low T (T= 5 MeV), thermal effects affect only the Fermi surface.

At large T, they produce also a depletion. The total depletion (around 15 per cent)

can be considered the sum of thermal depletion (3 per cent) and the depletion 

associated to dynamic correlations.



Neutron and proton momentum distributions for different asymmetries

The less abundant component ( the protons) are very much affected by 

thermal effects.



Momentum distributions of symmetric and neutron matter at T=5 MeV

High-momentum tails increase with density (Short-range correlations)



High-momentum components change very little whit isospín.

This suggest that, when the momentum distribution is normalized

to unity, high-momentum components are basically determined by 

the total density of the system.  



n(k) for neutron matter



Occupation of the lowest momentum state  as a function of density for 

neutron matter.



Dependence of n(k=0) on the asymmetry





n(k=0) for nuclear and neutron matter, 

Neutron matter is systematically 

less depleted



Contributions of different  momen-

tum  regions to the total density

(columns 3 and 6) , kinetic ( 4 and 7,

in MeV ) and total energies (5 and 8, 

in MeV)  for SNM (columns 3,4 and 5)

and PNM (columns 6,7 and 8) with

different NN interactions. 

The FFG case is also included.

All results are computed at

rho=0.16 fm-3 and T=5 MeV

Integrated strength over different

regions

Importance of the high momentum components





Isospin asymmetry dependence

of the kinetic and potential energy 

contributions to the total energy.

For the CDBONN (circles) and

Av18 (squares) potentials.

The triangles of the upper panel

give the energy of the FFG in the

same conditions, rho= 0.16 fm-3

and  T=5 MeV.

Almost linear dependence  ===>

quadratic dependence on the 

asymmetry paremeter.

Different slopes. 



Total, kinetic and potential contributions in MeV to the symmetry energy.

At rho= 0.16 fm-3and T= 5 MeV for different NN interactions.

The difference in total kinetc energy of PNM and SNM is smaller for the 

correlated case tan for the FFG

The symmetry energy is dominated by the potential energy



Components of the symmetry energy for the CDBonn and Av18 potentials at

T=5 Mev. The continuous (dashed) lines correspond to the FFG symmetry

energy at T=5  (T=0) MeV. NO THREE-BODY FORCE.



Summary 

 At the same density, neutron matter is less correlated than nuclear matter, 

in the sense that n(k) is less depletted.  The variation of kinetic energy 

respect to the FFG is smaller for neutron matter than for nuclear matter.

The  kinetic symmetry energy is very small (compared with the FFG) and 

could be even negative.  The potential part of the symmetry energy is very 

large. The main contribution coming from the tensor part of the NN 

interaction and the partial waves were the tensor is acting.  

The kinetic and the potential energy have  a quadratic dependence on the 

asymmetry paremeter.

The BHF values for the symmetry energy and L ( calculated with the Av18

and a Urbana IX three-body force are compatible with the experimental 

determinations. 

Important interplay between thermal and dynamical correlation effects. For 

a given temperature and decreasing density, the system approaches the 

classical limit and the depletion of n(k) increases. Not to confuse with 

correlation effects.

Three-body forces should not change the qualitative behavior of n(k).   



Present and future work ( uniform infinite systems)

Three-body forces. How  should be incorporated?

Present strategy for uniform systems: Average the interaction

over one particle to get a density dependent two-body force. 

One should do that very carefully  to respect the antisymmetry.

Also necessary: Perform a three-hole line calculation with the 

explicit use of three-body forces.

Response functions of neutron and nuclear matter. 

The depletion and spreading of the strength of the single particle

states should be reflected in the quenching and spreading of the 

response.  Already at the level of the dressed Lindhard function.

Work out the two-body correlations (distribution functions) from the 

two-body propagator. That it is also necessary for the average of the 

three-body forces.

Go beyond ladder approximation. To include long-range correlations.

RPA with dressed ph-propagators.

Pairing!

Applications to nuclear star physics. Beta-stable matter. Hyperons.



Special thanks to the people interested in these subjects  for 

enlighting discussions and collaborations!

Wim Dickhoff (St. Louis)

Herbert Muether  (Tubingen)

Arnau Rios (Surrey) 

Carlo Barbieri (Surrey)

Arianna Carbone (Darmstadt). See her thesis for three-body forces

Isaac Vidaña (Coimbra) 

D. Ding (PhD student at  Washington University in St. Louis)




