
Projects and how to develop a
numerical project

Carlo Barbieri, Wim Dickhoff, Gaute Hagen, Morten Hjorth-Jensen,
and Artur Polls

July 6-24, Ganil, Caen, France

Contents

Plan for the Talent course
An essential element of the Talent courses is to develop a large project(s) which
allows you to study and understand theoretical concepts in nuclear physics.
These concepts will in turn allow you to interpret results from experiments and
understand the pertinent physics in terms of the underlying forces and laws of
motion.

Together with the regular lectures in the morning, the hope is that during
these three weeks you will be able to write and run a program which implements
at least one of the methods discussed during the lectures. The lectures will also
cover additional material which aims at giving you a broader view on what can
be achieved with the methods to be discussed. Combined with the ’hands-on’
afternoon sessions, the hope is that the lectures and the computational projects
will together allow you to achieve these goals. For those of you who would
like to get credits to be transferred to your home university, the project(s) can
be extended upon allowing you to include further elements to the many-body
methods. The load of the final project is estimated to be 80 hours. In total,
attendence at the course and doing the final project amounts to seven ECTS.
There is no credit transfer for Northern-American students.

Outline of the project(s)
What is outlined here are several paths that will allow you to develop a program
which can be used to study nuclear systems. In particular, we will focus on

two widely used many-body methods, coupled cluster theory with its various
approximations and Green’s function theory.

Before we begin, we would however like to present a warm-up problem which
contains many of the basic elements of the many-body methods exposed in this
course. Furthermore, the simple pairing model described below, provides us with
benchmark results to which we can compare the different many-body methods.
The basic elements of the model (single-particle basis and Hamiltonian) can
easily be (if structured properly in your program) extended to studies of more
realistic systems, either finite systems like nuclei or infinite nuclear matter.

The first part of the project is a traditional paper and pencil part, where the
aim is to apply second quantization in order to set up the Hamiltonian matrix to
be diagonalized. We will study this model the first two afternoons of the school.

At most, with four particles in four doubly degenerate single particle states
and no broken pairs, you will have a 6× 6 Hamiltonian matrix to diagonalize.
Below, you will find a simple python program which performs the diagonalization
and plots the eigenvalues. Parts of this warm-up exercise are solved below. These
aspects will be discussed partly during the lectures but also during some of the
afternoon sessions. Practical guidelines for code writing will also be discussed.

This exercise will allow us to start writing our first skeleton for a coupled
cluster theory program at the so-called doubles level of truncation. It will also,
for those of you who will prefer to study Green’s functions, serve as a starting
point for developing the skeleton of a program for this method. The aim is to
finish this part of the program during the first week.

With a program which then benchmarks the simple pairing model, we will
turn our attention to more realistic systems. Here we propose the following paths
that can be studied with either coupled cluster theory or Green’s function theory.
Many of the technicalities will be discussed at the lectures and the afternoon
sessions during the last two weeks.

1. Studies of nuclear matter with a cartesian basis using coupled cluster
theory at the level of doubles excitations

• During the three weeks of the course we will mainly focus on two-
particle and two-hole excitations

• Focusing only on two-particle correlations in a finite cartesian basis,
these can be compared with Brueckner-Hartree-Fock calculations in
the infinite limit. The latter should represent exactly two-particle
correlations to infinite order. A simple model for the nuclear force
will be used.
• For the final project the code can be extended to include particle-hole

correlations as well

2. The two above paths can be performed using Green’s function as well.

• Studies of infinite nuclear matter including two-particle and two-hole
correlations using a cartesian basis.

2

• Comparison of two-particle correlations from Brueckner-Hartree-Fock
calculations in the infinite limit

If there is enough interest, we can also develop projects where Coupled Cluster
theory and Green’s function theories are applied to finite systems. In this case
we would like to propose a simple system of neutrons in a harmonic oscillator
trap since these calculations can be benchmarked agains existing results.

When working on the projects, we recommend strongly that you form teams
of two to three participants. Every team must have a github account where we
can monitor your progress and give you appropriate feedback.

If you have not used version control before now, it is time to do so. Proper
version control is central to a good ethical scientific conduct. We do require that
you use some kind of version control software when working on the projects. We
recommend strongly github. All lectures and additional material is available at
the github address of the course

Furthermore, before coming to the course, we recommend that you refresh
your knowledge on second quantization. If your background in second quanti-
zation is rudimentary and mentioning of Wick’s leave you gazing at the stars,
we recommend that you study the material at the course web site on second
quantization. Try in particular to do some of the exercises.

We will also ask you to come with your own laptop and have installed either
a

• Fortran compiler or a

• c++ compiler

If you do not have your own laptop, there will be some PCs locally with the
relevant compilers and software.

You can use Python as programming language as well, but normally the
efficiency of Python for the problems addressed in this course is lower than for
codes written in Fortran or c++. We recommend however that use Python as
a scripting language for running codes and making plots, as well as using the
ipython notebooks provided by us.

Some basic ingredients for a successful numerical project
When building up a numerical project there are several elements you should
think of, amongst these we take the liberty of mentioning the following:

1. How to structure a code in terms of functions

2. How to make a module

3. How to read input data flexibly from the command line

4. How to create graphical/web user interfaces

5. How to write unit tests (test functions)

3

http://journals.aps.org/prc/abstract/10.1103/PhysRevC.84.044306
https://github.com/
http://nucleartalent.github.io/Course2ManyBodyMethods/doc/web/course.html
http://nucleartalent.github.io/Course2ManyBodyMethods/doc/pub/secondquant/html/secondquant-bs.html
http://nucleartalent.github.io/Course2ManyBodyMethods/doc/pub/secondquant/html/secondquant-bs.html

6. How to refactor code in terms of classes (instead of functions only), in our
case you think of a system and a solver class

7. How to conduct and automate large-scale numerical experiments

8. How to write scientific reports in various formats (LATEX, HTML)

The conventions and techniques outlined here will save you a lot of time when
you incrementally extend software over time from simpler to more complicated
problems. In particular, you will benefit from many good habits:

1. New code is added in a modular fashion to a library (modules)

2. Programs are run through convenient user interfaces

3. It takes one quick command to let all your code undergo heavy testing

4. Tedious manual work with running programs is automated,

5. Your scientific investigations are reproducible, scientific reports with top
quality typesetting are produced both for paper and electronic devices.

The pairing model as warm-up problem
We present a simplified Hamiltonian consisting of an unperturbed Hamiltonian
and a so-called pairing interaction term. It is a model which to a large extent
mimicks some central features of atomic nuclei, certain atoms and systems which
exhibit superfluiditity or superconductivity. To study this system, we will use
a mix of many-body perturbation theory (MBPT), Hartree-Fock (HF) theory
and full configuration interaction (FCI) theory. The latter will also provide us
with the exact answer. When setting up the Hamiltonian matrix you will need
to solve an eigenvalue problem.

We define first the Hamiltonian, with a definition of the model space and the
single-particle basis. Thereafter, we present the various exercises (some of them
are solved).

The Hamiltonian acting in the complete Hilbert space (usually infinite di-
mensional) consists of an unperturbed one-body part, Ĥ0, and a perturbation
V̂ .

We limit ourselves to at most two-body interactions and our Hamiltonian is
represented by the following operators

Ĥ =
∑
αβ

〈α|h0|β〉a†αaβ + 1
4
∑
αβγδ

〈αβ|V |γδ〉a†αa
†
βaδaγ ,

where a†α and aα etc. are standard fermion creation and annihilation operators,
respectively, and αβγδ represent all possible single-particle quantum numbers.
The full single-particle space is defined by the completeness relation

1̂ =
∞∑
α=1
|α〉〈α|.

4

In our calculations we will let the single-particle states |α〉 be eigenfunctions of
the one-particle operator ĥ0. Note that the two-body part of the Hamiltonian
contains anti-symmetrized matrix elements.

The above Hamiltonian acts in turn on various many-body Slater determi-
nants constructed from the single-basis defined by the one-body operator ĥ0. As
an example, the two-particle model space P is defined by an operator

P̂ =
m∑

αβ=1
|αβ〉〈αβ|,

where we assume that m = dim(P) and the full space is defined by
P̂ + Q̂ = 1̂,

with the projection operator

Q̂ =
∞∑

αβ=m+1
|αβ〉〈αβ|,

being the complement of P̂ .
Our specific model consists of N doubly-degenerate and equally spaced single-

particle levels labelled by p = 1, 2, . . . and spin σ = ±1. These states are
schematically portrayed in Fig. 1. The first two single-particle levels define a
possible model space, indicated by the label P. The remaining states span the
excluded space Q.

We write the Hamiltonian as
Ĥ = Ĥ0 + V̂ ,

where
Ĥ0 = ξ

∑
pσ

(p− 1)a†pσapσ

and
V̂ = −1

2g
∑
pq

a†p+a
†
p−aq−aq+.

Here, H0 is the unperturbed Hamiltonian with a spacing between successive
single-particle states given by ξ, which we will set to a constant value ξ = 1
without loss of generality. The two-body operator V̂ has one term only. It
represents the pairing contribution and carries a constant strength g.

The indices σ = ± represent the two possible spin values. The interaction
can only couple pairs and excites therefore only two particles at the time, as
indicated by the rightmost four-particle state in Fig. 1. There one of the pairs is
excited to the state with p = 9 and the other to the state p = 7. The two middle
possibilities are not possible with the present model. We label single-particle
states within the model space as hole-states. The single-particle states outside
the model space are then particle states.

In our model we have kept both the interaction strength and the single-
particle level as constants. In a realistic system like an atom or the atomic
nucleus this is not the case.

5

1

p = 1

p = 2

p = 3

p = 4

p = 5

p = 6

p = 7

p = 8

p = 9

p = 10

p = . . .

Q

P

Figure 1: Schematic plot of the possible single-particle levels with double
degeneracy. The filled circles indicate occupied particle states while the empty
circles represent vacant particle(hole) states. The spacing between each level
p is constant in this picture. The first two single-particle levels define our
possible model space, indicated by the label P. The remaining states span the
excluded space Q. The first state to the left represents a possible ground state
representation for a four-fermion system. In the second state to the left, one
pair is broken. This possibility is however not included in our interaction.

Exercise 1: Pairing Hamiltonian
a) Show that the unperturbed Hamiltonian Ĥ0 and V̂ commute with both the
spin projection Ŝz and the total spin Ŝ2, given by

Ŝz := 1
2
∑
pσ

σa†pσapσ

and
Ŝ2 := Ŝ2

z + 1
2(Ŝ+Ŝ− + Ŝ−Ŝ+),

6

where
Ŝ± :=

∑
p

a†p±ap∓.

This is an important feature of our system that allows us to block-diagonalize the
full Hamiltonian. We will focus on total spin S = 0. In this case, it is convenient
to define the so-called pair creation and pair annihilation operators

P̂+
p = a†p+a

†
p−,

and
P̂−p = ap−ap+,

respectively.
Show that you can rewrite the Hamiltonian (with ξ = 1) as

Ĥ =
∑
pσ

(p− 1)a†pσapσ −
1
2g
∑
pq

P̂+
p P̂
−
q .

Show also that Hamiltonian commutes with the product of the pair creation
and annihilation operators. This model corresponds to a system with no broken
pairs. This means that the Hamiltonian can only link two-particle states in
so-called spin-reversed states.

b) Construct thereafter the Hamiltonian matrix for a system with no broken
pairs and total spin S = 0 for the case of the four lowest single-particle levels
indicated in the Fig. 1. Our system consists of four particles only. Our single-
particle space consists of only the four lowest levels p = 1, 2, 3, 4. You need to
set up all possible Slater determinants. Find all eigenvalues by diagonalizing the
Hamiltonian matrix. Vary your results for values of g ∈ [−1, 1]. We refer to this
as the exact calculation. Comment the behavior of the ground state as function
of g.

Solution. We give first the final Hamiltonian matrix

H =

2δ − g −g/2 −g/2 −g/2 −g/2 0
−g/2 4δ − g −g/2 −g/2 −0 −g/2
−g/2 −g/2 6δ − g 0 −g/2 −g/2
−g/2 −g/2 0 6δ − g −g/2 −g/2
−g/2 0 −g/2 −g/2 8δ − g −g/2

0 −g/2 −g/2 −g/2 −g/2 10δ − g

The following python program diagonalizes the above Hamiltonian matrix for a
given span of interaction strength values, performing both a full configuration
interaction calculation and a truncated one. For the truncated case we leave out
the 4p4h state. This means that in addition to the ground state we include the
four possible 2p2h states. Such a calculation is normally called a configuration
interaction calculation.

7

from numpy import *
from sympy import *
from matplotlib.pyplot import *

g_array = linspace(-1, 1, 1001)
e1_array = []
e2_array = []

for g in g_array:
H1 = matrix([[2-g , -g/2., -g/2., -g/2., -g/2., 0],

[-g/2., 4-g, -g/2., -g/2., 0., -g/2.],
[-g/2., -g/2., 6-g, 0, -g/2., -g/2.],

[-g/2., -g/2., 0, 6-g, -g/2., -g/2.],
[-g/2., 0, -g/2., -g/2., 8-g, -g/2.],
[0 , -g/2., -g/2., -g/2., -g/2., 10-g]])

H2 = matrix([[2-g , -g/2., -g/2., -g/2., -g/2.],
[-g/2., 4-g, -g/2., -g/2., 0.],
[-g/2., -g/2., 6-g, 0, -g/2.],

[-g/2., -g/2., 0, 6-g, -g/2.],
[-g/2., 0, -g/2., -g/2., 8-g]])

u1, v1 = linalg.eig(H1)
u2, v2 = linalg.eig(H2)

if g == 1./2:
print argmin(u1)

for i in range(5):
print " %.3f " % v2[i,0],

e1_array.append(min(u1))
e2_array.append(min(u2))

plot(g_array, e1_array, linewidth=2.0)
#plot(g_array, e2_array, linewidth=2.0)
plot(g_array, (2-g_array), linewidth=2.0)
grid()
xlabel(r"Strength of interaction, g", fontsize=16)
ylabel(r’Ground state energy’, fontsize=16)
#axis([-1,1,-0.4,0.05])
legend([’FCI -- Exact’, ’Reference energy’])
savefig("pairing.pdf")
show()

The eigenvalues and eigenvectors result from the diagonalization of the above
Hamiltonian matrix. In the discussions below and in connection with the first
stage of the numerical project, we will use these results to benchmark various
approximative methods. The lowest eigenvalue corresponds to the ground state
energy and we will refer to it as the exact energy when no truncations in the
space of possible Slater determinants are made..

From our results, we note some important differences between the full config-
uration interaction (FCI) calculation and the truncated configuration interaction

8

calculation (CI). Full configuration interaction is an exact method, but is only
possible if and only if we have a complete and finite SD basis for our system. In
practice, we usually don’t have this. Non-complete CI however, is always possible,
but yiels approximative results only. The method is however still variational
however, meaning that we guaranteed that the approximation will be equal or
bigger to the true result. Perturbation theory however, is non-variational and
there is no guarantee that including higher orders in the perturbation gives an
improved result, as we will see below.

In an FCI case, we are including all possible exictations to infinite order,
meaning we have all possible 1p1h , 2p2h etc configurations, up to 4p4h excita-
tions for our selected model. Due to the nature of the pairing interaction and
our selection of specific quantum numbers for the many-body states, we do not
have any 1p1h or 3p3h excitations. In the above CI case, we truncate those
excitations somewhere. If we were to draw the diagrams of the interactions that
contribute to this CI case, there would be an infinite number of them, as we
can have arbitrarily long chains of operators that still only have at most 2p2h
intermediate states.

c) We switch now to approximative methods, in our case Hartree-Fock theory
and many-body perturbation theory. Hereafter we will define our model space to
consist of the single-particle levels p = 1, 2. The remaining levels p = 3, 4 define
our excluded space. This means that our ground state Slater determinant consists
of four particles which can be placed in the doubly degenerate orbits p = 1 and
p = 2. Our first step is to perform a Hartree-Fock calculation with the pairing
Hamiltonian. Write first the normal-ordered Hamiltonian with respect to the
above reference state given by four spin 1/2 fermions in the single-particle levels
p = 1, 2. Define what is meant by a canonical Hartree-Fock case, a non-canonical
case and a general case. For all three cases, write down the normal-ordered
Hamiltonian and draw the diagrammatic form of the Hamiltonian for all three
cases.

d) We will now set up the Hartree-Fock equations by varying the coefficients of
the single-particle functions. The single-particle basis functions are defined as

ψp =
∑
λ

Cpλψλ.

where in our case p = 1, 2, 3, 4 and λ = 1, 2, 3, 4, that is the first four lowest
single-particle orbits of Fig. 1. Set up the Hartree-Fock equations for this system
by varying the coefficients Cpλ and solve them for values of g ∈ [−1, 1]. Comment
your results and compare with the exact solution. Discuss also which diagrams in
Fig. 2 that can be affected by a Hartree-Fock basis. Compute the total binding
energy using a Hartree-Fock basis and comment your results.

e) We will now study the system using non-degenerate Rayleigh-Schroedinger
perturbation theory to third order in the interaction. If we exclude the first
order contribution, all possible diagrams (so-called anti-symmetric Goldstone
diagrams) are shown in Fig. 2.

9

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

i j
p q

r s

Figure 2: Diagrams to third order in the interaction, including also non-canonical
Hartree-Fock diagrams. The first order term is excluded. All interaction vertices
represent anti-symmetrized matrix elements.

Figure 3: One-particle-one-hole excitations to fourth order.

Based on the form of the interaction, which diagrams contribute to the
binding energy of the ground state? Write down the expressions for the diagrams
that contribute and find the contribution to the ground state energy as function
g ∈ [−1, 1]. Comment your results. Compare these results with those you
obtained from the exact diagonalization with and without the 4p − 4h state.
Discuss your results for a canonical Hartree-Fock basis and a non-canonical
Hartree-Fock basis.

f) Diagram 1 in Fig. 2 represents a second-order contribution to the energy
and a so-called 2p − 2h contribution to the intermediate states. Write down
the expression for the wave operator in this case and compare the possible
contributions with the configuration interaction calculations without the 4p− 4h
Slater determinant. Comment your results for various values of g ∈ [−1, 1].

g) We limit now the discussion to the canonical Hartree-Fock case only. To
fourth order in perturbation theory we can produce diagrams with 1p − 1h
intermediate excitations as shown in Fig. 3, 2p − 2h excitations, see Fig. 4,
3p − 3h excitations as shown in Fig. 5 and finally so-called diagrams with
intermediate four-particle-four-hole excitations, see Fig. 6.

10

Figure 4: Two-particle-two-hole excitations to fourth order.

Figure 5: Three-particle-three-hole excitations to fourth order.

Define first linked and unlinked diagrams and explain briefly Goldstone’s
linked diagram theorem. Based on the linked diagram theorem and the form of
the pairing Hamiltonian, which diagrams will contribute to fourth order?

Calculate the energy to fourth order with a canonical Hartree-Fock basis for
g ∈ [−1, 1] and compare with the full diagonalization case in exercise b). Discuss
the results.

Solution. To fourth order in the interaction there are several diagrams to
consider. Fortunately, due to the character of the pairing Hamiltonian, several
of these contributions are zero. We limit our discussions also to include the
canonical HF-case only. All of the diagrams in the canonical case are shown in

11

Figure 6: Four-particle-four-hole excitations to fourth order.

figures 3, 4, 5 and 6 above. Using also the linked diagram theorem, where a
diagram is called unlinked if and only if it has a disconnected part that is closed,
we can eliminate some further diagrams. Goldstones linked-diagram theorem
states that all unliked diagrams will cancel against the renormalization terms
in Rayleigh-Schroedinger perturbation theory, meaning that we can define the
energy to each order as a sum of linked diagrams only. We can then disregard
diagram 33 and 41.

Let us now go through all the diagrams and find those that vanish due to
having broken pairs, i.e., the diagrams that vanish due to our specific interaction.
Take for example diagram 1, which vanishes due to having a term 〈ab|v̂|ci〉.
From this argument, we see that all four diagrams from figure 3 vanish. Similar
arguments shows that most diagrams in figure 4 also dissapear. Going through
all the diagrams, we see that 5, 6, 14 and 15 are the ones that do not vanish in
figure 4. For figure 5 we actually see that all diagrams vanish again. For figure
6 we already found that 33 and 41 vanished due to being unlinked—the rest
contribute to the perturbative expansion of the energy. The diagrams of figures
3 and 5 vanish since they involve 1p1h and 3p3h excitations, respectively.

The expressions for these diagrams can easily be written in terms of a simple
Python program. Note however that for every diagram we do actually perform
loops over every single-particle state. As we will see later, this is extremely
inefficient from a computational point of view. In our discussions of the projects
below, we will rewrite the computations of most diagrams in terms of efficient
matrix-matrix multiplications or matrix-vector multiplications. The following
Python program gives us the final results for perturbation theory to fourth order
in the interaction. The resulting figures include also plots of the relative error
in the correlation energy. That is, we compare the computed correlation in
perturbation theory with the result from the exact diagonalization discussed
above.

from sympy import *
from pylab import *

below_fermi = (0,1,2,3)
above_fermi = (4,5,6,7)

states = [(1,1),(1,-1),(2,1),(2,-1),(3,1),(3,-1),(4,1),(4,-1)]

12

N = 8
g = Symbol(’g’)

def h0(p,q):
if p == q:

p1, s1 = states[p]
return (p1 - 1)

else:
return 0

def f(p,q):
if p == q:

return 0

s = h0(p,q)
for i in below_fermi:

s += assym(p,i,q,i)
return s

def assym(p,q,r,s):
p1, s1 = states[p]
p2, s2 = states[q]
p3, s3 = states[r]
p4, s4 = states[s]

if p1 != p2 or p3 != p4:
return 0

if s1 == s2 or s3 == s4:
return 0

if s1 == s3 and s2 == s4:
return -g/2.

if s1 == s4 and s2 == s3:
return g/2.

def eps(holes, particles):
E = 0
for h in holes:

p, s = states[h]
E += (p-1)

for p in particles:
p, s = states[p]
E -= (p-1)

return E

Diagram 3
s = 0
for a in above_fermi:
for b in above_fermi:
for c in above_fermi:
for i in below_fermi:
for j in below_fermi:
for k in below_fermi:
s += assym(i,j,a,b)*assym(a,c,j,k)*assym(b,k,c,i)/eps((i,j),(a,b))/eps((k,j),(a,c))
print s

ga = linspace(-1,1,101)

13

corr2 = []
corr3 = []
corrx = []

Diagram 1
s1 = 0
for a in above_fermi:

for b in above_fermi:
for i in below_fermi:

for j in below_fermi:
s1 += 0.25*assym(a,b,i,j)*assym(i,j,a,b)/eps((i,j),(a,b))

Diagram 4
s4 = 0
for a in above_fermi:

for b in above_fermi:
for c in above_fermi:

for d in above_fermi:
for i in below_fermi:

for j in below_fermi:
s4 += 0.125*assym(i,j,a,b)*assym(a,b,c,d)*assym(c,d,i,j)/eps((i,j),(a,b))/eps((i,j),(c,d))

Diagram 5
s5 = 0
for a in above_fermi:

for b in above_fermi:
for i in below_fermi:

for j in below_fermi:
for k in below_fermi:

for l in below_fermi:
s5 += 0.125*assym(i,j,a,b)*assym(k,l,i,j)*assym(a,b,k,l)/eps((i,j),(a,b))/eps((k,l),(a,b))

Diagram 8 (simplified)
s8 = 0
for a in above_fermi:

for b in above_fermi:
for i in below_fermi:

for j in below_fermi:
for k in below_fermi:

s8 -= 0.5*assym(i,j,a,b)*assym(a,b,i,k)*f(k,j)/eps((i,j),(a,b))/eps((i,k),(a,b))

Diagram 9 (simplified)
s9 = 0
for a in above_fermi:

for b in above_fermi:
for c in above_fermi:

for i in below_fermi:
for j in below_fermi:

s9 += 0.5*assym(i,j,a,b)*assym(a,c,i,j)*f(b,c)/eps((i,j),(a,b))/eps((i,j),(a,c))

print s1
print s4
print s5
print s8
print s9

s_5 = -0.0291521990740741*g**4
s14 = -0.0308883101851853*g**4
s34 = 0.0163049768518519*g**4

14

s36 = -0.0145760995370371*g**4
s38 = -0.0201099537037037*g**4
s39 = 0.0176938657407407*g**4

ga = linspace(-1,1,10001)
e1 = []
corr2 = []
corr3 = []
corr4 = []
for g_val in ga:

H1 = matrix([[2-g_val , -g_val/2., -g_val/2., -g_val/2., -g_val/2., 0],
[-g_val/2., 4-g_val, -g_val/2., -g_val/2., 0., -g_val/2.],
[-g_val/2., -g_val/2., 6-g_val, 0, -g_val/2., -g_val/2.],

[-g_val/2., -g_val/2., 0, 6-g_val, -g_val/2., -g_val/2.],
[-g_val/2., 0, -g_val/2., -g_val/2., 8-g_val, -g_val/2.],
[0 , -g_val/2., -g_val/2., -g_val/2., -g_val/2., 10-g_val]])

u1, v1 = linalg.eig(H1)
e1.append(min(u1))

corr2.append((s1).subs(g,g_val))
corr3.append((s1+s4+s5).subs(g,g_val))
corr4.append((s1+s4+s5+2*s_5+2*s14+2*s34+2*s36+s38+2*s39).subs(g,g_val))

exact = e1 - (2-ga)

plot(ga, exact, linewidth=2.0)
plot(ga, corr2, linewidth=2.0)
plot(ga, corr3, linewidth=2.0)
plot(ga, corr4, linewidth=2.0)
xlabel(r’Interaction strength, g’, fontsize=16)
ylabel(r’Correlation energy’, fontsize=16)
axis([-1,1,-0.5,0.05])
grid()
legend(["Exact", "2. order MPBT", "3. order MPBT", "4. order MPBT"], ’lower left’)
savefig("perturbationtheory.pdf")
show()
error1 = zeros(len(exact))
error2 = zeros(len(exact))
error3 = zeros(len(exact))

for i in range(len(exact)):
error1[i] = abs(float(exact[i]-corr2[i]))
error2[i] = abs(float(exact[i]-corr3[i]))
error3[i] = abs(float(exact[i]-corr4[i]))

error1 = array(error1)
error2 = array(error2)
error3 = array(error3)
print type(error1)

plot(ga, log10(error1))
plot(ga, log10(error2))
plot(ga, log10(error3))
xlabel(r"Strength of interaction, g", fontsize=16)
ylabel(r"Error, $\log_{\rm 10}({\rm abs}({\rm error})$", fontsize=16)
legend(["2. order MPBT", "3. order MPBT", "4. order MPBT"], ’lower left’)
grid()
savefig("logerror.pdf")
show()

15

Running the Python program shows us that the approximation to both second and
third order are very good when the interaction strength is small and contained in
the interval g ∈ [−0.5, 0.5], but as the interaction gets stronger the approximation
worsens. We also note that the third-order result is actually worse than the
second order result for larger values of the interaction strength, indicating that
there is no guarantee that higher orders in many-body perturbation theory may
reduce the relative error in a systematic way. This is seen in particular for the
results to fourth order. For negative interaction strengths fourth order gives a
better result than second and third order, while for g > 0 the relative error is
worse. We note also the non-variational character of many-body perturbation
theory, with results at different undershooting the true ground state correlation
energy.

Project 2: Coupled cluster calculations with doubles exci-
tations only for the pairing model
This project serves as a continuation of the pairing model with the aim being
to solve the same problem but now by developing a program that implements
the coupled cluster method with double excitations only. In doing so you will
find it convenient to write classes which define the single-particle basis and the
Hamiltonian. Your functions that solve the coupled cluster equations will then
just need to set up variables which point to interaction elements and single-
particle states with their pertinent quantum numbers. Use for example the setup
discussed in the FCI lectures for the pairing model.

a) Explain why no single excitations are involved in this model.

b) Set up the coupled cluster equations for doubles excitations and convince
yourself about their meaning and correctness.

c) Write a class which holds single-particle data like specific quantum numbers,
single-particle Hamiltonian etc. Write also a class which sets up and stores
two-body matrix elements defined by the single-particle states. Write thereafter
functions/classes which implement the coupled cluster method with doubles only.

d) Compare your results with those from the exact diagonalization with and
without the 4p4h excitation. Compare also your results to perturbation theory
at different orders, in particular to second order. Discuss your results. If other
students are solving the same problem using Green’s function theory, you can
also compare your results with those obtained from Green’s function theory. The
aim is to finalize this part during the first week. The codes you will develop can
be used as a starting point for the second part of the project.

Project 3: Green’s function calculations with a second or-
der self-energy for the pairing model
This project serves as a continuation of the pairing model with the aim being
to solve the same problem but now by developing a program that implements

16

the self-consistent Green’s function method with a second order self energy.
This is what is called the ADC(2) approximation scheme. In doing so you
will find it convenient to write classes which define the single-particle basis
and the Hamiltonian. One more, important, class will be needed to store the
one-body propagator. Your functions that solve the ADC(3) will then just need
to set up variables which point to interaction elements, single-particle states and
Dyson states with their pertinent quantum numbers. Use for example the setup
discussed in the FCI lectures for the pairing model.

a) Write the diagrams for the self-energy at first and second order, using the
Lehman representation for the latter and HF reference state. Write the first
order diagrams also in terms of a fully dressed propagator.

b) Set up the Dyson-ADC(2) equations and convince yourself about their
meaning and correctness.

c) Write a class that holds the one-body propagator in Lehman representation.
In this, the Dyson orbits (or overlap functions) are expanded in terms of the
basis exactly as for the HF equations above. However, you will need to handle
a much larger number of orbits and their respective energies. You will also
need to store particle and hole orbits separately. Using the results of your HF
calculations above, build a simple HF propagator. This will be your reference
state.

d) Write a class which holds single-particle data like specific quantum numbers,
single-particle Hamiltonian etc. Write also a class which sets up and stores
two-body matrix elements defined by the single-particle states.

e) Use the above classes to solve the ADC(2) euqatoions in the following three
steps:

• write the ADC(2) Dyson matrix

• diagonalise it (with a Lapack or an eigensolver of your choice)

• normalize the eigenvalues, separate them in hole and particle states, and
store them in a new propagator object.

f) Now you can use your ADC(2) code to have some fun:

• Plot the spectral functions for the HF (reference) propagator and the final
(dressed) result. Compare them. This is the most fun part. otherwise why
should you write a SCGF code for?

• Use your solution (the dressed propagator) to recalculate the first order
diagram and and implement a partial self-consistency loop. See what
changes.

17

• Use the Koltun sum rule to calculate the binding energy and compare
your results with those from the exact diagonalization with and without
the 4p4h excitation. Compare also your results to perturbation theory
at different orders, in particular to second order. Discuss your results. If
other students are solving the same problem using CCD theory, you can
also compare your results with theirs.

• How do your results change by increasing the coupling g? When is ADC(2)
breaking down for this particular model?

The aim is to finalize this part, up to point e), during the first week. The codes
you will develop can be used as a starting point for the second part of the project.
In the second part we will focus on infinite matter.

Project 4: Coupled cluster calculations with doubles exci-
tations only for infinite nuclear matter
This project forms one possible final path for the remaining two weeks. It can
also be extended in order to define the final project. You should be able to use
the program you developed in connection with the solution of the pairing model.

a) Explain why we don’t have single excitations in infinite matter.

b) Set up the relavent quantum numbers for a cartesian basis with plane waves
in three dimensions. Make the according changes to the code you developed in
connection with the pairing model. Implement periodic boundary conditions.

c) Replace the two-body interaction from the pairing model with the Minnesota
potential model discussed during the lectures.

d) Use the program you developed in connection with the pairing model to
perform coupled cluster calculations in infinite matter with doubles excitations.
Perform coupled cluster calculations for infinite nuclear matter with the Min-
nesota interaction for different particle numbers (to be inserted later). Limit
yourself to two-particle and two-hole intermediate excitations only.

e) Compare the two-particle only excitations with a finite number of particles
with results obtained with Brueckner-Hartree-Fock calculations in the thermo-
dynamic limit. Comment your results

f) The final challenge is to include particle-hole excitations and compare the
results with those from Diffusion Monte Carlo calculations discussed during the
lectures. This part can be included in the final project.

Project 5: Green’s function calculations for finite nuclei
and infinite nuclear matter
The hard work in learning how to deal with SCGF was done in Project 2. Now,
we make it fancy and extend it to some more real systems rather than a simple

18

https://github.com/NuclearTalent/Course2ManyBodyMethods/blob/master/doc/pub/cc/pdf/Lectures1-2_TALENT_NuclearMatter_GH.pdf
https://github.com/NuclearTalent/Course2ManyBodyMethods/blob/master/doc/pub/cc/pdf/Lectures1-2_TALENT_NuclearMatter_GH.pdf

pairing model. This can be done very similarly either for finite nuclei or for
infinite nuclear matter. However, you should choose only one this two paths
and focus only on that: it is already a lot of work doing one. We will do this
at the ADC(2) level and toward the end of the project we will consider an
extended version of it to make useful comparison with the Brueckner-HF and
CCD calculations done by others.

Either of the two path of this project forms one possible final path for the
remaining two weeks. It can also be extended in order to define the final project.
You should be able to use the program you developed in connection with the
solution of the pairing model.

a) Explain why we don’t have single excitations in infinite matter.

b) Set up the relavent quantum numbers for your problem:

1. For FN: use and harmonic oscillator basis in m-scheme

2. for INM: use a cartesian basis with plane waves in three dimensions and
implement periodic boundary conditions.

In both cases, make the according changes to the code you developed in connection
with the pairing model.

c) Replace the two-body interaction from the pairing model with the Minnesota
potential model discussed during the lectures (functions for matrix elements in
harmonic oscillator basis will be provided).

d) Use the program you developed in connection with the pairing model to
perform SCGF calculations at second order. Perform calculations with the
Minnesota interaction as follows:

1. for finite nuclei chose closed shell systems (He4, C12, O16)

ofor infinite nuclear matter chose different particle numbers (to be inserted later).
At this point, limit yourself to the ADC(2) scheme only.

e) Add the two-particle interactions to the 2p1h sector of the Dyson-ADC(2)
matrix and suppress the 2h1p sector: this should lead you to an approximation
equivalent to the Brueckner-Hartree-Fock scheme. Compare your results obtained
with those obetain in CCD with only twp-particle intermediate excitations. If you
are doing infinite matter, compare to the Brueckner-Hartree-Fock calculations
in the thermodynamic limit (from project 6). Comment your results.

f) The final challenge is to keep both the 2p1h and the 2h1p sectors and fill
the ADC(n) matrix with all the two-particle, the two-hole, and the particle-
hole interactions. This last change results in the so called ’Extended ADC(2)’
approximation scheme. Investigate the effects that pp, hh and ph correlations.
This part can be included in the final project. And if you already got all the
way to point e), this last part should be a relatively easy improvement to make!

19

g) Are you felling particularly ambitious? One can further modify the code by
adding the missing 3rd order terms to the couplings between the single particle
sector and the 2p1h/2h1p sectors. This will give you a full blown ADC(3)
calculation. Study the effects of this last change on the energy of the main
quasiparticle peaks. chemist need this to obtain correct ionization potentials
and affinities.

Project 6: Brueckner-Hartree-Fock calculations for infinite
nuclear and neutron matter
a) We will use the simple Minnesota model discussed during the lectures. This
will allow us to make detailed comparisons with the Coupled cluster and the
Green’s function calculations. The first part deals with setting up the real and
imaginary part of T -matrix in free space using a partial wave decomposition.
You will need to define integration points and weights in momentum space and
treat properly the poles which arise. With a working program, compute the
relevant phase shifts. Extract also the scattering lengths for s waves (orbital
momentum l = 0).

Solution. For scattering states, the energy is positive, E > 0. The Lippman-
Schwinger equation (a rewrite of the Schroedinger equation) is an integral
equation where we have to deal with the amplitude R(k, k′) (reaction matrix,
which is the real part of the full complex T -matrix) defined through the integral
equation for one partial wave (no coupled-channels)

Rl(k, k′) = Vl(k, k′) + 2
π
P
∫ ∞

0
dqq2Vl(k, q)

1
E − q2/m

Rl(q, k′). (1)

For negative energies (bound states) and intermediate states scattering states
blocked by occupied states below the Fermi level.

The symbol P indicates that Cauchy’s principal-value prescription is used in
order to avoid the singularity arising from the zero of the denominator.

The total kinetic energy of the two incoming particles in the center-of-mass
system is

E = k2
0

mn
.

The matrix Rl(k, k′) relates to the the phase shifts through its diagonal
elements as

Rl(k0, k0) = − tanδl
mk0

. (2)

In order to solve the Lippman-Schwinger equation in momentum space, we need
first to write a function which sets up the mesh points. We need to do that since
we are going to approximate an integral through∫ b

a

f(x)dx ≈
N∑
i=1

wif(xi),

20

https://github.com/NuclearTalent/Course2ManyBodyMethods/blob/master/doc/pub/cc/pdf/Lectures1-2_TALENT_NuclearMatter_GH.pdf

where we have fixed N lattice points through the corresponding weights wi and
points xi. Typically obtained via methods like Gaussian quadrature.

If you use Gauss-Legendre the points are determined for the interval xi ∈
[−1, 1] You map these points over to the limits in your integral. You can then
use the following mapping

ki = const× tan
{π

4 (1 + xi)
}
,

and
ωi = const

π

4
wi

cos2
(
π
4 (1 + xi)

) .
If you choose units fm−1 for k, set const = 1. If you choose to work with MeV,
set const ∼ 200 (~c = 197 MeVfm).

The principal value integral is rather tricky to evaluate numerically, mainly
since computers have limited precision. We will here use a subtraction trick
often used when dealing with singular integrals in numerical calculations. We
introduce first the calculus relation∫ ∞

−∞

dk

k − k0
= 0.

It means that the curve 1/(k − k0) has equal and opposite areas on both sides
of the singular point k0. If we break the integral into one over positive k and
one over negative k, a change of variable k → −k allows us to rewrite the last
equation as ∫ ∞

0

dk

k2 − k2
0

= 0.

We can then express a principal values integral as

P
∫ ∞

0

f(k)dk
k2 − k2

0
=
∫ ∞

0

(f(k)− f(k0))dk
k2 − k2

0
, (3)

where the right-hand side is no longer singular at k = k0, it is proportional to
the derivative df/dk, and can be evaluated numerically as any other integral.

We can then use this trick to obtain

R(k, k′) = V (k, k′) + 2
π

∫ ∞
0

dq
q2V (k, q)R(q, k′)− k2

0V (k, k0)R(k0, k
′)

(k2
0 − q2)/m . (4)

This is the equation to solve numerically in order to calculate the phase shifts.
We are interested in obtaining R(k0, k0).

How do we proceed?
Using the mesh points kj and the weights ωj , we reach

R(k, k′) = V (k, k′)+ 2
π

N∑
j=1

ωjk
2
jV (k, kj)R(kj , k′)
(k2

0 − k2
j)/m

− 2
π
k2

0V (k, k0)R(k0, k
′)

N∑
n=1

ωn
(k2

0 − k2
n)/m.

21

This equation contains now the unknowns R(ki, kj) (with dimension N × N)
and R(k0, k0).

We can turn it into an equation with dimension (N + 1)× (N + 1) with a
mesh which contains the original mesh points kj for j = 1, N and the point
which corresponds to the energy k0. Consider the latter as the ’observable’ point.
The mesh points become then kj for j = 1, n and kN+1 = k0.

With these new mesh points we define the matrix

Ai,j = δi,j − V (ki, kj)uj , (5)

where δ is the Kronecker δ and

uj = 2
π

ωjk
2
j

(k2
0 − k2

j)/m
j = 1, N

and

uN+1 = − 2
π

N∑
j=1

k2
0ωj

(k2
0 − k2

j)/m
.

The first task is then to set up the matrix A for a given k0. This is an (N +
1) × (N + 1) matrix. It can be convenient to have an outer loop which runs
over the chosen observable values for the energy k2

0/m. Note that all mesh
points kj for j = 1, N must be different from k0. Note also that V (ki, kj) is an
(N + 1)× (N + 1) matrix.

With the matrix A we can rewrite the problem as a matrix problem of
dimension (N + 1)× (N + 1). All matrices R, A and V have this dimension and
we get

Ai,lRl,j = Vi,j ,

or just
AR = V.

Since you already have defined A and V (these are stored as (N +1)× (N +1)
matrices) The final equation involves only the unknown R. We obtain it by
matrix inversion, i.e.,

R = A−1V. (6)

Thus, to obtain R, you will need to set up the matrices A and V and invert the
matrix A. With the inverse A−1, perform a matrix multiplication with V results
in R.

With R you can then evaluate the phase shifts by noting that

R(kN+1, kN+1) = R(k0, k0) = − tanδ
mk0

,

where δ are the phase shifts.

22

b) Our next step consists in modifying the above program in order to include
medium effects. Rewrite the T -matrix program by introducing a so-called angle-
average Pauli operator and corresponding energy denominators. This results
in the so-called G-matrix. Allow for the inclusion of single-particle self-energy
contributions in the G-matrix energy denominators. Compute both the real and
imaginary parts of the G-matrix and set up the self-consistency problem and
compute the ground state energy per particle in the thermodynamical limit.

Compare your results with those obtained with Coupled Cluster theory and
Green’s function theory with a cartesian basis

c) In the final part of this project we are going to extend the formalism to
finite temperature. Use the normalization condition of the density from the
Fermi-Dirac momentum distribution to calculate the chemical potential in the
medium. Compute thereafter the equation of state as function of temperature
and discuss thermodynamical self-consistency requirements.

23

