
The Coupled Cluster Method

Thomas Papenbrock

The University of Tennessee, Knoxville, tpapenbr@utk.edu

Aug 4, 2018

c© 2018, Thomas Papenbrock. Released under CC Attribution-NonCommercial 4.0 license

Contents

1 The Coupled-Cluster Method 3
paragraph>14 paragraph>15 paragraph>15 paragraph>27 para-

graph>27

2 Nucleonic Matter 34
paragraph>34 paragraph>34

3 From Structure to Reactions 55

c© 2018, Thomas Papenbrock. Released under CC Attribution-NonCommercial 4.0 license

Chapter 1

The Coupled-Cluster
Method

Introduction
The coupled-cluster method is an efficient tool to compute atomic nuclei with an
effort that grows polynomial with system size. While this might still be expensive,
it is now possible to compute nuclei with mass numbers about A ≈ 100 with
this method. Recall that full configuration interaction (FCI) such as the no-core
shell model exhibits an exponential cost and is therefore limited to light nuclei.

c© 2018, Thomas Papenbrock. Released under CC Attribution-NonCommercial 4.0 license

Figure 1.1: Realistic computations of atomic nuclei with interactions from chiral
EFT. The slow increase prior to 2015 is based on quantum Monte Carlo and the
no-core shell model. These methods are exponentially expensive (in mass number
A) and meet with exponentially increasing computer power (Moore’s law), thus
leading to a progress that is linear in time. Methods such as coupled clusters
and in-medium SRG carry a polynomial cost in mass number are transforming
the field.

The normal-ordered Hamiltonian
We start from the reference state

|Φ0〉 =
A∏
i=1

a†i |0〉 (1.1)

for the description of a nucleus with mass number A. Usually, this reference
is the Hartree-Fock state, but that is not necessary. In the shell-model picture, it
could also be a product state where the lowest A harmonic oscillator states are
occupied. Here and in what follows, the indices i, j, k, . . . run over hole states,
i.e. orbitals occupied in the reference state (1.1), while a, b, c, . . . run over particle

4

states, i.e. unoccupied orbitals. Indices p, q, r, s can identify any orbital. Let nu
be the number of unoccupied states, and A is of course the number of occupied
states. We consider the Hamiltonian

H =
∑
pq

εpqa
†
paq + 1

4
∑
pqrs

〈pq|V |rs〉a†pa†qasar (1.2)

The reference state (1.1) is a non-trivial vacuum of our theory. We normal
order this Hamiltonian with respect to the nontrivial vacuum state given by the
Hartree-Fock reference and obtain the normal-ordered Hamiltonian

HN =
∑
pq

fpq
{
a†paq

}
+ 1

4
∑
pqrs

〈pq|V |rs〉
{
a†pa
†
qasar

}
. (1.3)

Here,

fpq = εpq +
∑
i

〈pi|V |qi〉 (1.4)

is the Fock matrix. We note that the Fock matrix is diagonal in the Hartree-
Fock basis. The brackets {· · · } in Eq. (1.3) denote normal ordering, i.e. all
operators that annihilate the nontrivial vaccum (1.1) are to the right of those
operators that create with respect to that vaccum. Normal ordering implies that
〈Φ0|HN |Φ0〉 = 0.

*
Exercise 1: Practice in normal ordering

Normal order the expression
∑
pq
εpqa
†
paq.

Hint.∑
pq

εpqa
†
paq =

∑
ab

εaba
†
aab +

∑
ai

εai a
†
aai +

∑
ai

εiaa
†
iaa +

∑
ij

εija
†
iaj (1.5)

5

Answer. We have to move all operators that annihilate the reference state to
the right of those that create on the reference state. Thus,∑
pq

εpqa
†
paq =

∑
ab

εaba
†
aab +

∑
ai

εai a
†
aai +

∑
ai

εiaa
†
iaa +

∑
ij

εija
†
iaj (1.6)

=
∑
ab

εaba
†
aab +

∑
ai

εai a
†
aai +

∑
ai

εiaa
†
iaa +

∑
ij

εij

(
−aja†i + δji

)
(1.7)

=
∑
ab

εaba
†
aab +

∑
ai

εai a
†
aai +

∑
ai

εiaa
†
iaa −

∑
ij

εijaja
†
i +

∑
i

εii (1.8)

=
∑
pq

εpq
{
a†paq

}
+
∑
i

εii (1.9)

===== =====
We note that H = EHF +HN , where

EHF ≡ 〈Φ0|H|Φ0〉 =
∑
i

εii + 1
2
∑
ij

〈ij|V |ij〉 (1.10)

is the Hartree-Fock energy. The coupled-cluster method is a very efficient
tool to compute nuclei when a “good” reference state is available. Let us assume
that the reference state results from a Hartree-Fock calculation.

*
Exercise 2: What does “good” mean?

How do you know whether a Hartree-Fock state is a “good” reference? Which
results of the Hartree-Fock computation will inform you?

Answer. Once the Hartree-Fock equations are solved, the Fock matrix (1.4)
becomes diagonal, and its diagonal elements can be viewed as single-particle
energies. Hopefully, there is a clear gap in the single-particle spectrum at the
Fermi surface, i.e. after A orbitals are filled.

===== =====
If symmetry-restricted Hartree-Fock is used, one is limited to compute nuclei

with closed subshells for neutrons and for protons. On a first view, this might
seem as a severe limitation. But is it?

6

*
Exercise 3: How many nuclei are accessible with the coupled cluster method
based on spherical mean fields?

If one limits oneself to nuclei with mass number up to mass number A = 60,
how many nuclei can potentially be described with the coupled-cluster method?
Which of these nuclei are potentially interesting? Why?

Answer. Nuclear shell closures are at N,Z = 2, 8, 20, 28, 50, 82, 126, and sub-
shell closures at N,Z = 2, 6, 8, 14, 16, 20, 28, 32, 34, 40, 50,

In the physics of nuclei, the evolution of nuclear structure as neutrons are
added (or removed) from an isotope is a key interest. Examples are the rare
isotopes of helium (He-8,10) oxygen (O-22,24,28), calcium (Ca-52,54,60), nickel
(Ni-78) and tin (Sn-100,132). The coupled-cluster method has the potential to
address questions regarding these nuclei, and in a several cases was used to make
predictions before experimental data was available. In addition, the method can
be used to compute neighbors of nuclei with closed subshells.

===== =====

The similarity transformed Hamiltonian
There are several ways to view and understand the coupled-cluster method. A
first simple view of coupled-cluster theory is that the method induces correlations
into the reference state by expressing a correlated state as

|Ψ〉 = eT |Φ0〉, (1.11)

Here, T is an operator that induces correlations. We can now demand
that the correlate state (1.11) becomes and eigenstate of the Hamiltonian HN ,
i.e. HN |Ψ〉 = E|Ψ〉. This view, while correct, is not the most productive one.
Instead, we left-multiply the Schroedinger equation with e−T and find

HN |Φ0〉 = Ec|Φ0〉. (1.12)

Here, Ec is the correlation energy, and the total energy is E = Ec + EHF .
The similarity-transformed Hamiltonian is defined as

HN ≡ e−THNe
T . (1.13)

A more productive view on coupled-cluster theory thus emerges: This method
seeks a similarity transformation such that the uncorrelated reference state (1.1)
becomes an exact eigenstate of the similarity-transformed Hamiltonian (1.13).

7

*
Exercise 4: What T leads to Hermitian HN ?

What are the conditions on T such that HN is Hermitian?

Answer. For a Hermitian HN , we need a unitary eT , i.e. an anti-Hermitian T
with T = −T †

===== =====
As we will see below, coupld-cluster theory employs a non-Hermitian Hamil-

tonian.

*
Exercise 5: Understanding (non-unitary) similarity transformations

Show that HN has the same eigenvalues as HN for arbitrary T . What is the
spectral decomposition of a non-Hermitian HN ?

Answer. Let HN |E〉 = E|E〉. Thus

HNe
T e−T |E〉 = E|E〉,(

e−THNe
T
)
e−T |E〉 = Ee−T |E〉,

HNe
−T |E〉 = Ee−T |E〉.

Thus, if |E〉 is an eigenstate of HN with eigenvalue E, then e−T |E〉 is
eigenstate of HN with the same eigenvalue.

A non-Hermitian HN has eigenvalues Eα corresponding to left 〈Lα| and right
|Rα〉 eigenstates. Thus

HN =
∑
α

|Rα〉Eα〈Lα| (1.14)

with bi-orthonormal 〈Lα|Rβ〉 = δβα.
===== =====
To make progress, we have to specify the cluster operator T . In coupled

cluster theory, this operator is

T ≡
∑
ia

tai a
†
aai+

1
4
∑
ijab

tabij a
†
aa
†
bajai+· · ·+

1
(A!)2

∑
i1...iAa1...aA

ta1...aA
i1...iA

a†a1
· · · a†aAaiA · · · ai1 .

(1.15)
Thus, the operator (1.15) induces particle-hole (p-h) excitations with respect

to the reference. In general, T generates up to Ap − Ah excitations, and the
unknown parameters are the cluster amplitides tai , tabij , ..., t

a1,...,aA
i1,...,iA

.

8

*
Exercise 6: How many unknowns?

Show that the number of unknowns is as large as the FCI dimension of the
problem, using the numbers A and nu.

Answer. We have to sum up all np−nh excitations, and there are
(
nu
n

)
particle

states and
(
A

A−n
)
hole states for each n. Thus, we have for the total number

A∑
n=0

(
nu
n

)(
A

A− n

)
=
(
A+ nu
A

)
. (1.16)

The right hand side are obviously all ways to distribute A fermions over
n0 +A orbitals.

===== =====
Thus, the coupled-cluster method with the full cluster operator (1.15) is

exponentially expensive, just as FCI. To make progress, we need to make an
approximation by truncating the operator. Here, we will use the CCSD (coupled
clusters singles doubles) approximation, where

T ≡
∑
ia

tai a
†
aai + 1

4
∑
ijab

tabij a
†
aa
†
bajai. (1.17)

We need to determine the unknown cluster amplitudes that enter in CCSD.
Let

|Φai 〉 = a†aai|Φ0〉, (1.18)

|Φabij 〉 = a†aa
†
bajai|Φ0〉 (1.19)

be 1p-1h and 2p-2h excitations of the reference. Computing matrix elements
of the Schroedinger Equation (1.12) yields

〈Φ0|HN |Φ0〉 = Ec, (1.20)
〈Φai |HN |Φ0〉 = 0, (1.21)
〈Φabij |HN |Φ0〉 = 0. (1.22)

The first equation states that the coupled-cluster correlation energy is an
expectation value of the similarity-transformed Hamiltonian. The second and
third equations state that the similarity-transformed Hamiltonian exhibits no
1p-1h and no 2p-2h excitations. These equations have to be solved to find the

9

unknown amplitudes tai and tabij . Then one can use these amplitudes and compute
the correlation energy from the first line of Eq. (1.20).

We note that in the CCSD approximation the reference state is not an exact
eigenstates. Rather, it is decoupled from simple states but H still connects this
state to 3p-3h, and 4p-4h states etc.

At this point, it is important to recall that we assumed starting from a “good”
reference state. In such a case, we might reasonably expect that the inclusion of
1p-1h and 2p-2h excitations could result in an accurate approximation. Indeed,
empirically one finds that CCSD accounts for about 90% of the corelation energy,
i.e. of the difference between the exact energy and the Hartree-Fock energy. The
inclusion of triples (3p-3h excitations) typically yields 99% of the correlation
energy.

We see that the coupled-cluster method in its CCSD approximation yields a
similarity-transformed Hamiltonian that is of a two-body structure with respect
to a non-trivial vacuum. When viewed in this light, the coupled-cluster method
“transforms” an A-body problem (in CCSD) into a two-body problem, albeit
with respect to a nontrivial vacuum.

*
Exercise 7: Why is CCD not exact?

Above we argued that a similarity transformation preserves all eigenvalues.
Nevertheless, the CCD correlation energy is not the exact correlation energy.
Explain!

Answer. The CCD approximation does not make |Φ0〉 an exact eigenstate
of HN ; it is only an eigenstate when the similarity-transformed Hamiltonian is
truncated to at most 2p-2h states. The full HN , with T = T2, would involve
six-body terms (do you understand this?), and this full Hamiltonian would
reproduce the exact correlation energy. Thus CCD is a similarity transformation
plus a truncation, which decouples the ground state only from 2p-2h states.

===== =====

Computing the similarity-transformed Hamilto-
nian
The solution of the CCSD equations, i.e. the second and third line of Eq. (1.20),
and the computation of the correlation energy requires us to compute matrix
elements of the similarity-transformed Hamiltonian (1.13). This can be done
with the Baker-Campbell-Hausdorff expansion

10

HN = e−THNe
T (1.23)

= HN + [HN , T] + 1
2! [[HN , T] , T] + 1

3! [[[HN , T] , T] , T] + (1.24)

We now come to a key element of coupled-cluster theory: the cluster oper-
ator (1.15) consists of sums of terms that consist of particle creation and hole
annihilation operators (but no particle annihilation or hole creation operators).
Thus, all terms that enter T commute with each other. This means that the
commutators in the Baker-Campbell-Hausdorff expansion (1.23) can only be
non-zero because each T must connect to HN (but no T with another T). Thus,
the expansion is finite.

*
Exercise 8: When does CCSD truncate?

In CCSD and for two-body Hamiltonians, how many nested commutators
yield nonzero results? Where does the Baker-Campbell-Hausdorff expansion
terminate? What is the (many-body) rank of the resulting HN?

Answer. CCSD truncates for two-body operators at four-fold nested commu-
tators, because each of the four annihilation and creation operators in HN can
be knocked out with one term of T .

===== =====
We see that the (disadvantage of having a) non-Hermitian Hamiltonian

HN leads to the advantage that the Baker-Campbell-Hausdorff expansion is
finite, thus leading to the possibility to compute HN exactly. In contrast, the
IMSRG deals with a Hermitian Hamiltonian throughout, and the infinite Baker-
Campbell-Hausdorff expansion is truncated at a high order when terms become
very small.

We write the similarity-transformed Hamiltonian as

HN =
∑
pq

H
p

qa
†
qap + 1

4
∑
pqrs

H
pq

rsa
†
pa
†
qasar + . . . (1.25)

with

H
p

q ≡ 〈p|HN |q〉, (1.26)
H
pq

rs ≡ 〈pq|HN |rs〉. (1.27)

Thus, the CCSD Eqs. (1.20) for the amplitudes can be written as Ha

i = 0
and Hab

ij = 0.

11

*
Exercise 9: Compute the matrix element Hij

ab ≡ 〈ij|HN |ab〉

Answer. This is a simple task. This matrix element is part of the operator
H
ij

aba
†
ia
†
jabaa, i.e. particles are annihilated and holes are created. Thus, no

contraction of the Hamiltonian H with any cluster operator T (remember that
T annihilates holes and creates particles) can happen, and we simply have
H
ij

ab = 〈ij|V |ab〉.
===== =====
We need to work out the similarity-transformed Hamiltonian of Eq. (1.23).

To do this, we write T = T1 +T2 and HN = F +V , where T1 and F are one-body
operators, and T2 and V are two-body operators.

Example: The contribution of [F, T2] to HN

The commutator [F, T2] consists of two-body and one-body terms. Let us
compute first the two-body term, as it results from a single contraction (i.e. a
single application of [ap, a†q] = δqp). We denote this as [F, T2]2b and find

12

[F, T2]2b = 1
4
∑
pq

∑
rsuv

fqp t
ab
ij

[
a†qap, a

†
aa
†
bajai

]
2b

= 1
4
∑
pq

∑
abij

fqp t
ab
ij δ

a
pa
†
qa
†
bajai

− 1
4
∑
pq

∑
abij

fqp t
ab
ij δ

b
pa
†
qa
†
aajai

− 1
4
∑
pq

∑
abij

fqp t
ab
ij δ

j
qa
†
aa
†
bapai

+ 1
4
∑
pq

∑
abij

fqp t
ab
ij δ

i
qa
†
aa
†
bapaj

= 1
4
∑
qbij

(∑
a

fqa t
ab
ij

)
a†qa
†
bajai

− 1
4
∑
qaij

(∑
b

fqb t
ab
ij

)
a†qa
†
aajai

− 1
4
∑
pabi

∑
j

f jp t
ab
ij

 a†aa
†
bapai

+ 1
4
∑
pabj

(∑
i

f ipt
ab
ij

)
a†aa
†
bapaj

= 1
2
∑
qbij

(∑
a

fqa t
ab
ij

)
a†qa
†
bajai

− 1
2
∑
pabi

∑
j

f jp t
ab
ij

 a†aa
†
bapai.

Here we exploited the antisymmetry tabij = −tabji = −tbaij = tbaji in the last
step. Using a†qa

†
bajai = −a†ba†qajai and a†aa

†
bapai = a†aa

†
baiap, we can make the

expression manifest antisymmetric, i.e.

[F, T2]2b = 1
4
∑
qbij

[∑
a

(
fqa t

ab
ij − f bat

qa
ij

)]
a†qa
†
bajai

− 1
4
∑
pabi

∑
j

(
f jp t

ab
ij − f

j
i t
ab
pj

) a†aa†bapai.

13

Thus, the contribution of [F, T2]2b to the matrix element Hab

ij is

H
ab

ij ←
∑
c

(
fac t

cb
ij − f bc tacij

)
−
∑
k

(
fkj t

ab
ik − fki tabjk

)
Here we used an arrow to indicate that this is just one contribution to this

matrix element. We see that the derivation straight forward, but somewhat
tedious. As no one likes to commute too much (neither in this example nor
when going to and from work), and so we need a better approach. This is where
diagramms come in handy.

===== =====

Diagrams. The pictures in this Subsection are taken from Crawford and
Schaefer.

By convention, hole lines (labels i, j, k, . . .) are pointing down.
By convention, particle lines (labels a, b, c, . . .) are pointing up.
Let us look at the one-body operator of the normal-ordered Hamiltonian,

i.e. Fock matrix. Its diagrams are as follows.
We now turn to the two-body interaction. It is denoted as a horizontal

dashed line with incoming and outgoing lines attached to it. We start by noting
that the following diagrams of the interaction are all related by permutation
symmetry.

*
Exercise 10: Assign the correct matrix element 〈pq|V |rs〉 to each of the following
diagrams of the interaction

Remember: 〈left− out, right− out|V|left− in, right− in〉.
aragraph!paragraph>paragraph>-0.5em

a)

Answer. 〈ab|V |cd〉+ 〈ij|V |kl〉+ 〈ia|V |bj〉

14

aragraph!paragraph>paragraph>-0.5em

b)

Answer. 〈ai|V |bc〉+ 〈ij|V |ka〉+ 〈ab|V |ci〉
aragraph!paragraph>paragraph>-0.5em

c)

Answer. 〈ia|V |jk〉+ 〈ab|V |ij〉+ 〈ij|V |ab〉
===== =====
Finally, we have the following diagrams for the T1 and T2 amplitudes.
We are now in the position to construct the diagrams of the similarity-

transformed Hamiltonian, keeping in mind that these diagrams correspond to
matrix elements of HN . The rules are as follows.

1. Write down all topologically different diagrams corresponding to the desired
matrix element. Topologically different diagrams differ in the number
and type of lines (particle or hole) that connect the Fock matrix F or
the interaction V to the cluster amplitudes T , but not whether these
connections are left or right (as those are related by antisymmetry). As
an example, all diagrams in Fig. 1.8 are topologically identical, because
they consist of incoming particle and hole lines and of outgoing particle
and hole lines.

2. Write down the matrix elements that enter the diagram, and sum over all
internal lines.

3. The overall sign is (−1) to the power of [(number of hole lines) – (number
of loops)].

15

4. Symmetry factor: For each pair of equivalent lines (i.e. lines that connect
the same two operators) multiply with a factor 1/2. For n identical vertices,
multiply the algebraic expression by the symmery factor 1/n! to account
properly for the number of ways the diagram can be constructed.

5. Antisymmetrize the outgoing and incoming lines as necessary.

Please note that this really works. You could derive these rules for yourself
from the commutations and factors that enter the Baker-Campbell-Hausdorff
expansion. The sign comes obviously from the arrangement of creation and
annilhilation operators, while the symmetry factor stems from all the different
ways, one can contract the cluster operator with the normal-ordered Hamiltonian.

Example: CCSD correlation energy
The CCSD correlation energy, Ec = 〈Φ0|HN |Φ0〉, is the first of the CCSD
equations (1.20). It is a vacuum expectation value and thus consists of all
diagrams with no external legs. There are three such diagrams:

The correponding algebraic expression is Ec =
∑
ia f

i
at
a
i + 1

4
∑
ijab〈ij|V |ab〉tabij +

1
2
∑
ijab〈ij|V |ab〉tai tbj .
The first algebraic expression is clear. We have one hole line and one loop,

giving it a positive sign. There are no equivalent lines or vertices, giving it no
symmetry factor. The second diagram has two loops and two hole lines, again
leading to a positive sign. We have a pair of equivalent hole lines and a pair
of equivalent particle lines, each giving a symmetry factor of 1/2. The third
diagram has two loops and two hole lines, again leading to a positive sign. We
have two indentical vertices (each connecting to a T1 in the same way) and thus
a symmetry factor 1/2.

===== =====

16

Figure 1.2: This is a hole line.

17

Figure 1.3: This is a particle line.

18

Figure 1.4: The diagrams corresponding to f ba. The dashed line with the ’X’
denotes the interaction F between the incoming and outgoing lines. The labels
a and b are not denoted, but you should label the outgoing and incoming lines
accordingly.

19

Figure 1.5: The diagrams corresponding to f ji . The dashed line with the ’X’
denotes the interaction F between the incoming and outgoing lines.

20

Figure 1.6: The diagrams corresponding to f ia. The dashed line with the ’X’
denotes the interaction F between the incoming and outgoing lines.

21

Figure 1.7: The diagrams corresponding to fai . The dashed line with the ’X’
denotes the interaction F between the incoming and outgoing lines.

22

Figure 1.8: The diagrams corresponding to 〈ai|V |jb〉 = −〈ai|V |bj〉 =
−〈ia|V |jb〉 = 〈ia|V |bj〉.

Figure 1.9: The horizontal full line is the cluster amplitude with incoming hole
lines and outgoing particle lines as indicated.

Figure 1.10: Three diagrams enter for the CCSD correlation energy, i.e. all
diagrams that leave no external legs.

23

CCD Approximation
In what follows, we will consider the coupled cluster doubles (CCD) approxi-
mation. This approximation is valid in cases where the system cannot exhibit
any particle-hole excitations (such as nuclear matter when formulated on a
momentum-space grid) or for the pairing model (as the pairing interactions only
excites pairs of particles). In this case tai = 0 for all i, a, and H

a

i = 0. The
CCD approximation is also of some sort of leading order approximation in the
Hartree-Fock basis (as the Hartree-Fock Hamiltonian exhibits no particle-hole
excitations).

*
Exercise 11: Derive the CCD equations!

Let us consider the matrix element Hab

ij . Clearly, it consists of all diagrams
(i.e. all combinations of T2, and a single F or V that have two incoming hole
lines and two outgoing particle lines. Write down all these diagrams.

Hint. Start systematically! Consider all combinations of F and V diagrams
with 0, 1, and 2 cluster amplitudes T2.

Figure 1.11: The diagrams for the T2 equation, i.e. the matrix elements of Hab

ij .
Taken from Baardsen et al (2013).

24

Answer. The corresponding algebraic expression is

H
ab

ij = 〈ab|V |ij〉+ P (ab)
∑
c

f bc t
ac
ij − P (ij)

∑
k

fkj t
ab
ik

+ 1
2
∑
cd

〈ab|V |cd〉tcdij + 1
2
∑
kl

〈kl|V |ij〉tabkl + P (ab)P (ij)
∑
kc

〈kb|V |cj〉tacik

+ 1
2P (ij)P (ab)

∑
kcld

〈kl|V |cd〉tacik tdblj + 1
2P (ij)

∑
kcld

〈kl|V |cd〉tcdik tablj

+ 1
2P (ab)

∑
kcld

〈kl|V |cd〉tackl tdbij + 1
4
∑
kcld

〈kl|V |cd〉tcdij tabkl .

===== =====
Let us now turn to the computational cost of a CCD computation.

*
Exercise 12: Computational scaling of CCD

For each of the diagrams in Fig. 1.11 write down the computational cost in
terms of the number of occupied A and the number of unoccupied nu orbitals.

Answer. The cost is A2n2
u, A2n3

u, A3n2
u, A2n4

u, A4n2
u, A3n3

u, A4n4
u, A4n4

u,
A4n4

u, and A4n4
u for the respective diagrams.

===== =====
Note that nu � A in general. In textbooks, one reads that CCD (and CCSD)

cost only A2n4
u. Our most expensive diagrams, however are A4n4

u. What is
going on?

To understand this puzzle, let us consider the last diagram of Fig. 1.11. We
break up the computation into two steps, computing first the intermediate

χklij ≡
1
2
∑
cd

〈kl|V |cd〉tcdij (1.28)

at a cost of A4n2
u, and then

1
2
∑
kl

χklij t
ab
kl (1.29)

at a cost of A4n2
u. This is affordable. The price to pay is the storage of the

intermediate χklij , i.e. we traded memory for computational cycles. This trick is
known as “factorization.”

25

*
Exercise 13: Factorize the remaining diagrams of the CCD equation

Diagrams 7, 8, and 9 of Fig. 1.11 also need to be factorized.

Answer. For diagram number 7, we compute

χalid ≡
∑
kc

〈kl|V |cd〉tacik (1.30)

at a cost of A3n3
u and then compute

1
2P (ij)P (ab)

∑
ld

χalidt
db
lj (1.31)

at the cost of A3n3
u.

For diagram number 8, we compute

χli ≡ −
1
2
∑
kcd

〈kl|V |cd〉tcdik (1.32)

at a cost of A3n2
u, and then compute

−P (ij)
∑
l

χlit
ab
lj (1.33)

at the cost of A3n2
u.

For diagram number 9, we compute

χad ≡
1
2
∑
kcl

〈kl|V |cd〉tackl (1.34)

at a cost of A2n3
u and then compute

P (ab)
∑
d

χadt
db
ij (1.35)

at the cost of A3n3
u.

===== =====
We are now ready, to derive the full CCSD equations, i.e. the matrix elements

of Ha

i and Hab

ij .

*
Project 14: (Optional) Derive the CCSD equations!

26

aragraph!paragraph>paragraph>-0.5em

a) Let us consider the matrix element Ha

i first. Clearly, it consists of all
diagrams (i.e. all combinations of T1, T2, and a single F or V that have an
incoming hole line and an outgoing particle line. Write down all these diagrams.

Figure 1.12: The diagrams for the T1 equation, i.e. the matrix elements of Ha

i .
Taken from Crawford and Schaefer. Here 〈pq||rs〉 ≡ 〈pq|V |rs〉 and fpq ≡ fpq .

Answer.
aragraph!paragraph>paragraph>-0.5em

b) Let us now consider the matrix element Hab

ij . Clearly, it consists of
all diagrams (i.e. all combinations of T1, T2, and a single F or V that have
two incoming hole lines and two outgoing particle lines. Write down all these
diagrams and corresponding algebraic expressions.

Answer. ===== =====
We can now turn to the solution of the coupled-cluster equations.

Solving the CCD equations
The CCD equations, depicted in Fig. 1.11, are nonlinear in the cluster amplitudes.
How do we solve Hab

ij = 0? We subtract (faa + f bb − f ii − f
j
j)tabij from both sides

of Hab

ij = 0 (because this term is contained in Hab

ij) and find

(f ii + f jj − f
a
a − f bb)tabij = (f ii + f jj − f

a
a − f bb)tabij +H

ab

ij

Dividing by (f ii + f jj − faa − f bb) yields

tabij = tabij +
H
ab

ij

f ii + f jj − faa − f bb
(1.36)

This equation is of the type t = f(t), and we solve it by iteration, i.e. we
start with a guess t0 and iterate tn+1 = f(tn), and hope that this will converge

27

Figure 1.13: The diagrams for the T2 equation, i.e. the matrix elements of Hab

ij .
Taken from Crawford and Schaefer. Here 〈pq||rs〉 ≡ 〈pq|V |rs〉, fpq ≡ fpq , and
P (ab) = 1− (a↔ b) antisymmetrizes.

to a solution. We take the perturbative result

(
tabij
)

0 = 〈ab|V |ij〉
f ii + f jj − faa − f bb

(1.37)

as a starting point, compute Hab

ij , and find a new tabij from the right-hand
side of Eq. (1.36). We repeat this process until the amplitudes (or the CCD
energy) converge.

28

CCD for the pairing Hamiltonian
You learned about the pairing Hamiltonian earlier in this school. Convince
yourself that this Hamiltonian does not induce any 1p-1h excitations. Let us
solve the CCD equations for this problem. This consists of the following steps

1. Write a function that compute the potential, i.e. it returns a four-indexed
array (or tensor). We need 〈ab|V |cd〉, 〈ij|V |kl〉, and 〈ab|V |ij〉. Why is
there no 〈ab|V |id〉 or 〈ai|V |jb〉 ?

2. Write a function that computes the Fock matrix, i.e. a two-indexed array.
We only need f ba and f ji . Why?

3. Initialize the cluster amplitudes according to Eq. (1.37), and solve Eq.
(1.36) by iteration. The cluster amplitudes T1 and T2 are two- and four-
indexed arrays, respectively.

Please note that the contraction of tensors (i.e. the summation over common
indices in products of tensors) is very user friendly and elegant in python when
numpy.einsum is used.

*
Project 15: Solve the CCD equations for the pairing problem

The Hamiltonian is

H = δ

Ω∑
p=1

(p− 1)
(
a†p+ap+ + a†p−ap−

)
− g

2

Ω∑
p,q=1

a†p+a
†
p−aq−aq+. (1.38)

Check your results and reproduce Fig 8.5 and Table 8.12 from Lecture Notes
in Physics 936.

Answer. Click for IPython notebook for FCI and CCD solutions

Coupled clusters in CCD approximation
Implemented for the pairing model of Lecture Notes in Physics 936, Chapter 8.
Thomas Papenbrock, June 2018

import numpy as np

def init_pairing_v(g,pnum,hnum):
"""
returns potential matrices of the pairing model in three relevant channels

param g: strength of the pairing interaction, as in Eq. (8.42)
param pnum: number of particle states
param hnum: number of hole states

return v_pppp, v_pphh, v_hhhh: np.array(pnum,pnum,pnum,pnum),
np.array(pnum,pnum,hnum,hnum),
np.array(hnum,hnum,hnum,hnum),

29

https://github.com/NuclearTalent/ManyBody2018/tree/master/doc/Programs/Python/PairingModel

The interaction as a 4-indexed tensor in three channels.
"""
v_pppp=np.zeros((pnum,pnum,pnum,pnum))
v_pphh=np.zeros((pnum,pnum,hnum,hnum))
v_hhhh=np.zeros((hnum,hnum,hnum,hnum))

gval=-0.5*g
for a in range(0,pnum,2):

for b in range(0,pnum,2):
v_pppp[a,a+1,b,b+1]=gval
v_pppp[a+1,a,b,b+1]=-gval
v_pppp[a,a+1,b+1,b]=-gval
v_pppp[a+1,a,b+1,b]=gval

for a in range(0,pnum,2):
for i in range(0,hnum,2):

v_pphh[a,a+1,i,i+1]=gval
v_pphh[a+1,a,i,i+1]=-gval
v_pphh[a,a+1,i+1,i]=-gval
v_pphh[a+1,a,i+1,i]=gval

for j in range(0,hnum,2):
for i in range(0,hnum,2):

v_hhhh[j,j+1,i,i+1]=gval
v_hhhh[j+1,j,i,i+1]=-gval
v_hhhh[j,j+1,i+1,i]=-gval
v_hhhh[j+1,j,i+1,i]=gval

return v_pppp, v_pphh, v_hhhh

def init_pairing_fock(delta,g,pnum,hnum):
"""
initializes the Fock matrix of the pairing model

param delta: Single-particle spacing, as in Eq. (8.41)
param g: pairing strength, as in eq. (8.42)
param pnum: number of particle states
param hnum: number of hole states

return f_pp, f_hh: The Fock matrix in two channels as numpy arrays np.array(pnum,pnum), np.array(hnum,hnum).
"""

the Fock matrix for the pairing model. No f_ph needed, because we are in Hartree-Fock basis
deltaval=0.5*delta
gval=-0.5*g
f_pp = np.zeros((pnum,pnum))
f_hh = np.zeros((hnum,hnum))

for i in range(0,hnum,2):
f_hh[i ,i] = deltaval*i+gval
f_hh[i+1,i+1] = deltaval*i+gval

for a in range(0,pnum,2):
f_pp[a ,a] = deltaval*(hnum+a)
f_pp[a+1,a+1] = deltaval*(hnum+a)

return f_pp, f_hh

def init_t2(v_pphh,f_pp,f_hh):
"""

30

Initializes t2 amlitudes as in MBPT2, see first equation on page 345

param v_pphh: pairing tensor in pphh channel
param f_pp: Fock matrix in pp channel
param f_hh: Fock matrix in hh channel

return t2: numpy array in pphh format, 4-indices tensor
"""
pnum = len(f_pp)
hnum = len(f_hh)
t2_new = np.zeros((pnum,pnum,hnum,hnum))
for i in range(hnum):

for j in range(hnum):
for a in range(pnum):

for b in range(pnum):
t2_new[a,b,i,j] = v_pphh[a,b,i,j] / (f_hh[i,i]+f_hh[j,j]-f_pp[a,a]-f_pp[b,b])

return t2_new

CCD equations. Note that the "->abij" assignment is redundant, because indices are ordered alphabetically.
Nevertheless, we retain it for transparency.
def ccd_iter(v_pppp,v_pphh,v_hhhh,f_pp,f_hh,t2):

"""
Performs one iteration of the CCD equations (8.34), using also intermediates for the nonliniar terms

param v_pppp: pppp-channel pairing tensor, numpy array
param v_pphh: pphh-channel pairing tensor, numpy array
param v_hhhh: hhhh-channel pairing tensor, numpy array
param f_pp: Fock matrix in pp channel
param f_hh: Fock matrix in hh channel
param t2: Initial t2 amplitude, tensor in form of pphh channel

return t2_new: new t2 amplitude, tensor in form of pphh channel
"""
pnum = len(f_pp)
hnum = len(f_hh)
Hbar_pphh = (v_pphh

+ np.einsum(’bc,acij->abij’,f_pp,t2)
- np.einsum(’ac,bcij->abij’,f_pp,t2)
- np.einsum(’abik,kj->abij’,t2,f_hh)
+ np.einsum(’abjk,ki->abij’,t2,f_hh)
+ 0.5*np.einsum(’abcd,cdij->abij’,v_pppp,t2)
+ 0.5*np.einsum(’abkl,klij->abij’,t2,v_hhhh)

)

hh intermediate, see (8.47)
chi_hh = 0.5* np.einsum(’cdkl,cdjl->kj’,v_pphh,t2)

Hbar_pphh = Hbar_pphh - (np.einsum(’abik,kj->abij’,t2,chi_hh)
- np.einsum(’abik,kj->abji’,t2,chi_hh))

pp intermediate, see (8.46)
chi_pp = -0.5* np.einsum(’cdkl,bdkl->cb’,v_pphh,t2)

Hbar_pphh = Hbar_pphh + (np.einsum(’acij,cb->abij’,t2,chi_pp)
- np.einsum(’acij,cb->baij’,t2,chi_pp))

hhhh intermediate, see (8.48)
chi_hhhh = 0.5 * np.einsum(’cdkl,cdij->klij’,v_pphh,t2)

Hbar_pphh = Hbar_pphh + 0.5 * np.einsum(’abkl,klij->abij’,t2,chi_hhhh)

31

phph intermediate, see (8.49)
chi_phph= + 0.5 * np.einsum(’cdkl,dblj->bkcj’,v_pphh,t2)

Hbar_pphh = Hbar_pphh + (np.einsum(’bkcj,acik->abij’,chi_phph,t2)
- np.einsum(’bkcj,acik->baij’,chi_phph,t2)
- np.einsum(’bkcj,acik->abji’,chi_phph,t2)
+ np.einsum(’bkcj,acik->baji’,chi_phph,t2))

t2_new=np.zeros((pnum,pnum,hnum,hnum))
for i in range(hnum):

for j in range(hnum):
for a in range(pnum):

for b in range(pnum):
t2_new[a,b,i,j] = (t2[a,b,i,j]

+ Hbar_pphh[a,b,i,j] / (f_hh[i,i]+f_hh[j,j]-f_pp[a,a]-f_pp[b,b]))

return t2_new

def ccd_energy(v_pphh,t2):
"""
Computes CCD energy. Call as
energy = ccd_energy(v_pphh,t2)

param v_pphh: pphh-channel pairing tensor, numpy array
param t2: t2 amplitude, tensor in form of pphh channel

return energy: CCD correlation energy
"""
erg = 0.25*np.einsum(’abij,abij’,v_pphh,t2)
return erg

###############################
######## Main Program

set parameters as for model
pnum = 20 # number of particle states
hnum = 10 # number of hole states
delta = 1.0

g = 0.5

print("parameters")
print("delta =", delta, ", g =", g)

Initialize pairing matrix elements and Fock matrix
v_pppp, v_pphh, v_hhhh = init_pairing_v(g,pnum,hnum)
f_pp, f_hh = init_pairing_fock(delta,g,pnum,hnum)

Initialize T2 amplitudes from MBPT2
t2 = init_t2(v_pphh,f_pp,f_hh)
erg = ccd_energy(v_pphh,t2)

Exact MBPT2 for comparison, see last equation on page 365
exact_mbpt2 = -0.25*g**2*(1.0/(2.0+g) + 2.0/(4.0+g) + 1.0/(6.0+g))
print("MBPT2 energy =", erg, ", compared to exact:", exact_mbpt2)

32

iterate CCD equations niter times
niter=200
mix=0.3
erg_old=0.0
eps=1.e-8
for iter in range(niter):

t2_new = ccd_iter(v_pppp,v_pphh,v_hhhh,f_pp,f_hh,t2)
erg = ccd_energy(v_pphh,t2_new)
myeps = abs(erg-erg_old)/abs(erg)
if myeps < eps: break
erg_old=erg
print("iter=", iter, "erg=", erg, "myeps=", myeps)
t2 = mix*t2_new + (1.0-mix)*t2

print("Energy = ", erg)

33

Chapter 2

Nucleonic Matter

We want to compute nucleonic matter using coupled cluster or IMSRG methods,
and start with considering the relevant symmetries.

*
Exercise 16: Which symmetries are relevant for nuclear matter?

aragraph!paragraph>paragraph>-0.5em

a) Enumerate continuous and discrete symmetries of nuclear matter.

Answer. The symmetries are the same as for nuclei. Continuous symmetries:
translational and rotational invariance. Discrete symmetries: Parity and time
reversal invariance.

aragraph!paragraph>paragraph>-0.5em

b) What basis should we use to implement these symmetries? Why do we
have to make a choice between the two continuous symmetries? Which basis is
most convenient and why?

Answer. Angular momentum and momentum do not commute. Thus, there
is no basis that respects both symmetries simultaneously. If we choose the
spherical basis, we are computing a spherical blob of nuclear matter and have to
contend with surface effects, i.e. with finite size effects. We also need a partial-
wave decomposition of the nuclear interaction. This approach has been done
followed in [“Coupled-cluster studies of infinite nuclear matter, ” G. Baardsen,
A. Ekström, G. Hagen, M. Hjorth-Jensen, arXiv:1306.5681, Phys. Rev. C 88,
054312 (2013)]. If we choose a basis of discrete momentum states, translational
invariance can be respected. This also facilitates the implementetation of modern
nuclear interactions (which are often formulated in momentum space in effective

c© 2018, Thomas Papenbrock. Released under CC Attribution-NonCommercial 4.0 license

field theories). However, we have to think about the finite size effects imposed
by periodic boundary conditions (or generalized Bloch waves). This approch
was implemented in [“Coupled-cluster calculations of nucleonic matter,” G.
Hagen, T. Papenbrock, A. Ekström, K. A. Wendt, G. Baardsen, S. Gandolfi,
M. Hjorth-Jensen, C. J. Horowitz, arXiv:1311.2925, Phys. Rev. C 89, 014319
(2014)].

===== =====

Basis states
In what follows, we employ a basis made from discrete momentum states,
i.e. those states |kx, ky, kz〉 in a cubic box of size L that exhibit periodic boundary
conditions, i.e. ψk(x+ L) = ψk(x).

*
Exercise 17: Determine the basis states

What are the discrete values of momenta admissable in (kx, ky, kz)?

Answer. In 1D position space ψk(x) ∝ eikx with k = 2πn
L and n = 0,±1,±2, . . .

fulfill ψk(x+ L) = ψk(x).
===== =====
Thus, we use a cubic lattice in momentum space. Note that the momentum

states eikx are not invariant under time reversal (i.e. under k → −k), and also
do not exhibit good parity (x→ −x). The former implies that the Hamiltonian
matrix will in general be complex Hermitian and that the cluster amplitudes
will in general be complex.

*
Exercise 18: How large should the basis be?

What values should be chosen for the box size L and for the maximum number
nmax , i.e. for the discrete momenta k = 2πn

L and n = 0,±1, ±2, . . . ,±nmax?

Answer. Usually nmax is fixed by computational cost, because we have (2nmax+
1)3 basis states. We have used nmax = 4 or up to nmax = 6 in actual calculations
to get converged results.

The maximum momentum must fulfill knmax > Λ, where Λ is the momemtum
cutoff of the interaction. This then fixes L for a given nmax.

===== =====

35

Coupled cluster and IMSRG start from a Hartree-Fock reference state, and
we need to think about this next. What are the magic numbers of a cubic lattice
for neutron matter?

*
Exercise 19: Determine the lowest few magic numbers for a cubic lattice.

Answer. As the spin-degeneracy is gs = 2, we have the magic numbers gsN
with N = 1, 7, 19, 27, 33, 57, 66, . . . for neutrons.

===== =====
Given nmax and L for the basis parameters, we can choose a magic neutron

number N . Clearly, the density of the system is then ρ = N/L3. This summarizes
the requirements for the basis. We choose nmax as large as possible, i.e. as large
as computationally feasible. Then L and N are constrained by the UV cutoff
and density of the system.

Finite size effects
We could also have considered the case of a more generalized boundary condition,
i.e. ψk(x + L) = eiθψk(x). Admissable momenta that fulfill such a boundary
condition are kn(θ) = 2πn+θ

L . Avering over the “twist” angle θ removes finite size
effects, because the discrete momenta are really drawn form a continuum. In
three dimensions, there are three possible twist angles, and averaging over twist
angles implies summing over many results corresponding to different angles. Thus,
the removal of finite-size effects significantly increases the numerical expense.
An example is shown in Figure 2.1, where we compute the kinetic energy per
particle

TN (θx, θy, θz) = gs
∑

nx,ny,nz∈N

~2
(
k2
nx(θx) + k2

ny (θy) + k2
nz (θz)

)
2m (2.1)

and compare with the infinite result Tinf = 3
10

~2k2
F

m N valid for the free Fermi
gas. We clearly see strong shell effects (blue dashed line) and that averaging
over the twist angles (red full line) very much reduces the shell oscillations. We
also note that the neutron number 66 is quite attractive as it exhibits smaller
finite size effects than other of the accessible magic numbers.

36

Figure 2.1: Relative finite-size corrections for the kinetic energy in pure neutron
matter at the Fermi momentum kF = 1.6795fm−1 versus the neutron number A.
TABC10 are twist-averaged boundary conditions with 10 Gauss-Legendre points
in each spatial direction.

Channel structure of Hamiltonian and cluster am-
plitudes
Good quantum numbers for the nuclear interaction (i.e. operators that commute
with the Hamiltonian and with each other) are total momentum, and the number
of neutrons and protons, and – for simple interactions – also the spin (this is
really spin, not orbital anular momentum or total angular momentum, as the
latter two do not commute with momentum). Thus the Hamiltonian (and the
cluster amplitudes) will consist of blocks, one for each set of quantum numbers.
We call the set of quantum numbers that label each such block as a “channel.”
As the interaction is block diagonal, a numerically efficient implementation of
nuclear matter has to take advantage of this channel structure. In fact, neutron
matter cannot be computed in a numerically converged way (i.e. for large enough
nmax) if one does not exploit the channel structure.

The Hamiltonian is of the structure

H =
∑
~k,σ

ε
~k,σ
~k,σ
a†~k,σ

a~k,σ +
∑

~Q,~p,~k,σs

V σ3σ4
σ1σ2

(~p,~k)a†~Q/2+~p,σ3
a†~Q/2−~p,σ4

a ~Q/2−~k,σ2
a ~Q/2+~k,σ1

(2.2)

37

with ε
~k,σ
~k,σ

= k2

2m . In Eq. (2.2) we expressed the single-particle momenta
in terms of center-of-mass momentum ~Q and relative momenta (~k, ~p), i.e. the
incoming momenta (~k1,~k2) and outgoing momenta (~k3,~k3) are

~k1 = ~Q/2 + ~k, (2.3)
~k2 = ~Q/2− ~k, (2.4)
~k3 = ~Q/2 + ~p, (2.5)
~k4 = ~Q/2− ~p. (2.6)

The conservation of momentum is obvious in the two-body interaction as
both the annihilation operators and the creation operators depend on the same
center-of-mass momentum ~Q. We note that the two-body interaction V depends
only on the relative momenta (~k, ~p) but not on the center-of-mass momentum.
We also note that a local interaction (i.e. an interaction that is multiplicative
in position space) depends only on the momentum transfer ~k − ~p. The spin
projections ±1/2 are denoted as σ.

Thus, the T2 operator is

T2 = 1
4

∑
~Q,~p,~k,σs

tσ3σ4
σ1σ2

(Q; ~p,~k)a†~Q/2+~p,σ3
a†~Q/2−~p,σ4

a ~Q/2−~k,σ2
a ~Q/2+~k,σ1

. (2.7)

We note that the amplitude tσ3σ4
σ1σ2

(Q; ~p,~k) depends on the center-of-mass
momentum ~Q, in contrast to the potential matrix element V σ3σ4

σ1σ2
(~p,~k).

In the expressions (2.2) and (2.7) we supressed that σ1 + σ2 = σ3 + σ4. So, a
channel is defined by ~Q and total spin projection σ1 + σ2.

Because of this channel structure, the simple solution we implemented for
the pairing problem cannot be really re-used when computing neutron matter.
Let us take a look at the Minnesota potential

V (r) =
(
VR(r) + 1

2(1 + Pσ12)VT (r) + 1
2(1− Pσ12)VS(r)

)
1
2(1− Pσ12P

τ
12). (2.8)

Here,

Pσ12 = 1
2(1 + ~σ1 · ~σ2),

P τ12 = 1
2(1 + ~τ1 · ~τ2) (2.9)

are spin and isospin exchange operators, respectively, and ~σ and ~τ are vectors
of Pauli matrices in spin and isospin space, respectively. Thus,

38

1
2(1− Pσ12P

τ
12) = |S12 = 0, T12 = 1〉〈S12 = 0, T12 = 1|+ |S12 = 1, T12 = 0〉〈S12 = 1, T12 = 0|

(2.10)

projects onto two-particle spin-isospin states as indicated, while

1
2(1− Pσ12) = |S12 = 0〉〈S12 = 0|, (2.11)
1
2(1 + Pσ12) = |S12 = 1〉〈S12 = 1| (2.12)

project onto spin singlet and spin triplet combinations, respectively. For neutron
matter, two-neutron states have isospin T12 = 1, and the Minnesota potential has
no triplet term VT . For the spin-exchange operator (and spins s1, s2 = ±1/2),
we have Pσ12|s1s2〉 = |s2s1〉. For neutron matter, P τ12 = 1, because the states are
symmetric under exchange of isospin. Thus, the Minnesota potential simplifies
significantly for neutron matter as VT does not contribute.

We note that the spin operator has matrix elements

〈s′1s′2|
1
2(1− Pσ12)|s1s2〉 = 1

2

(
δ
s′

1
s1 δ

s′
2
s2 − δ

s′
2
s1 δ

s′
1
s2

)
. (2.13)

The radial functions are

VR(r) = VRe
−κRr2

, (2.14)

VS(r) = VSe
−κSr2

, (2.15)

VT (r) = VT e
−κT r2

, (2.16)
(2.17)

and the parameters are as follows

α Vα κα
R +200 MeV 1.487 fm −2

S -91.85 MeV 0.465 fm −2

T -178 MeV 0.639 fm −2

Note that κ1/2
α sets the momentum scale of the Minnesota potential. We see

that we deal with a short-ranged repulsive core (the VR term) and longer ranged
attractive terms in the singlet (the term VS) and triplet (the term VT) channels.

A Fourier transform (in the finite cube of length L) yields the momentum-
space form of the potential

〈kpkq|Vα|krks〉 = Vα
L3

(
π

κα

)3/2
e−

q2
4κα δkr+ks

kp+kq . (2.18)

Here, q ≡ 1
2 (kp − kq − kr + ks) is the momentum transfer, and the momentum

conservation kp + kq = kr + ks is explicit.

39

As we are dealing only with neutrons, the potential matrix elements (including
spin) are for α = R,S

〈kpspkqsq|Vα|krsrksss〉 = 〈kpkq|Vα|krks〉
1
2

(
δsrspδ

ss
sq − δ

ss
spδ

sr
sq

)
, (2.19)

and it is understood that there is no contribution from VT . Please note that
the matrix elements (2.19) are not yet antisymmetric under exchange, but
〈kpspkqsq|Vα|krsrksss〉 − 〈kpspkqsq|Vα|kssskrsr〉 is.

Example: Channel structure and its usage
We have single-particle states with momentum and spin, namely

|r〉 ≡ |krsr〉. (2.20)

Naively, two-body states are then

|rs〉 ≡ |krsrksss〉, (2.21)

but using the center-of-mass transformation (2.3) we can rewrite

|rs〉 ≡ |Prskrssrss〉, (2.22)

where Prs = kr + ks is the total momentum and krs = (kr − ks)/2 is the
relative momentum. This representation of two-body states is well adapated to
our problem, because the interaction and the T2 amplitudes preserve the total
momentum. Thus, we store the cluster amplitudes tabij as matrices

tabij → [t(Pij)]|kabsasb〉|kijsisj〉 ≡ t
|Pijkabsasb〉
|Pijkijsisj〉 , (2.23)

and the conservation of total momentum is explicit.
Likewise, the pppp, pphh, and hhhh parts of the interaction can be written

in this form, namely

V abcd → [V (Pab)]|kabsasb〉|kcdscsd〉 ≡ V
|Pabkabsasb〉
|Pabkcdscsd〉 , (2.24)

V abij → [V (Pij)]|kabsasb〉|kijsisj〉 ≡ V
|Pijkabsasb〉
|Pijkijsisj〉 , (2.25)

V klij → [V (Pij)]|kklsksl〉|kijsisj〉 ≡ V
|Pijkklsksl〉
|Pijkijsisj〉 , (2.26)

and we also have

H
ab

ij →
[
H(Pij)

]|kabsasb〉
|kijsisj〉

≡ H |Pijkabsasb〉|Pijkijsisj〉 , (2.27)

40

Using these objects, diagrams (1), (4), and (5) of Figure 1.11 can be done
for each block of momentum Pij as a copy and matrix-matrix multiplications,
respectively

[
H(Pij)

]|kabsasb〉
|kijsisj〉

= [V (Pij)]|kabsasb〉|kijsisj〉 (2.28)

+ 1
2

∑
|kklsksl〉

[t(Pij)]|kabsasb〉|kklsksl〉 [V (Pij)]|kklsksl〉|kijsisj〉 (2.29)

+ 1
2

∑
|kcdscsd〉

[V (Pij)]|kabsasb〉|kcdscsd〉 [t(Pij)]|kcdscsd〉|kijsisj〉 . (2.30)

Similarly, the CCD correlation energy results from

Ec = 1
4
∑
Pij

∑
|kijsisj〉

∑
|kabsasb〉

[t(Pij)]|kabsasb〉|kijsisj〉 [V (Pij)]|kabsasb〉|kijsisj〉 (2.31)

These efficiences cannot be used for the sixth diagram of Figure 1.11. One
could either change to a ph formulation, noting that ka − ki = kk − kc is also a
preserved quantity in tacik and that kk − kc = kj − kb is preserved in V kbcj . Thus∑
kc t

ac
ikV

kb
cj has a conserved quantity kk − kc in the loop, and we can again use

matrix-matrix multiplications for this diagram. This requires us to store the T2
amplitude in a phhp and in the usual pphh formulation. Alternatively, we could
simply code this diagram with the loops over single-particle states. If this seems
too tedious, one can also limit CCD to the first five diagrams in Figure 1.11 (these
are the pp and hh ladders), which gives a good description for neutron matter,
see the comparison between this and full CCD in [“Coupled-cluster calculations
of nucleonic matter,” G. Hagen, T. Papenbrock, A. Ekström, K. A. Wendt, G.
Baardsen, S. Gandolfi, M. Hjorth-Jensen, C. J. Horowitz, arXiv:1311.2925, Phys.
Rev. C 89, 014319 (2014)].

===== =====
The steps towards the solution of the CCD equations for neutron matter are

as follows

1. For a given density and UV cutoff, set up the lattice, i.e. determine the
single-particle basis.

2. Determine the channels allowed by the (Minnesota) interaction, i.e. sets of
two-body states that are connected by the interaction.

3. Exploit this channel structure when computing the diagrams.

4. Solve the coupled-cluster equations. Here we start first with the pp and
hh ladders, i.e. using only the first five diagrams of Figure 1.11.

41

*
Exercise 20: Write a CCD code for neutron matter, focusing first on ladder
approximation, i.e. including the first five diagrams in Figure 1.11.

Answer. Click for IPython notebook

import numpy as np

##
CCD Program for neutron matter with the Minnesota potential.
#
Thomas Papenbrock, July/August 2018
#
License: Free Software following Version 3 of GNU General Public License,
see https://www.gnu.org/licenses/gpl.html
#######

##########################
Class for neutron matter
#######

class MomSpaceBasis:
"""
momentum-space basis class
The constructor has the form

MomSpaceBasis(Nmax,kmax)

param Nmax: Number of lattice points in positive kx-direction
param kmax: Highest lattice momentum (in 1/fm)

return: MomSpaceBasis as a single-partcle basis.
attributes of MomSpaceBasis are

dk : lattice spacing in 1/fm
Lbox : linear dimension (in fm) of cubic box
nvec : lattice vectors (integers)
kvec : lattice momentum vectors (floats, in 1/fm)
ngrid : total number of lattice points
"""
def __init__(self,Nmax,kmax,ordered=True):

"""
the constructor

Generates a cubic lattice in momentum space
param Nmax: Number of lattice points in positive kx-direction
param kmax: Highest lattice momentum (in 1/fm)
param ordered: Optional parameter, True by default, will order lattice points by kinetic energy

return MomSpaceBasis
"""
self.Nmax = Nmax
self.dim = 0
self.ngrid = 0
self._kvec=[]
self._nvec=[]

42

https://github.com/NuclearTalent/ManyBody2018/tree/master/doc/Programs/Python/NeutronMatter

dk = kmax / Nmax
self.dk = dk
self.Lbox = 2.0*np.pi/dk

nx=[]
nvec=[]
for i in range(-Nmax,Nmax+1):

self.dim=self.dim+1
nx.append(i)

#print(’nx=’,nx)

for i in nx:
for j in nx:

for k in nx:
nvec.append(np.array([i,j,k], dtype=int))

#print(’nvec=’,nvec)
self.ngrid=len(nvec)

if ordered:
#print("ordered")
norm=np.zeros(self.ngrid,dtype=int)
for i, vec in enumerate(nvec):

npvec=np.array(vec,dtype=int)
norm[i]=np.dot(npvec,npvec)

print(i, vec, norm[i])

index=np.argsort(norm)
#print(index)
self._nvec=[]
for i, ind in enumerate(index):

#print(i, ind, nvec[ind])
self._nvec.append(nvec[ind])

else:
self._nvec=nvec # a list

self._kvec = np.array(self._nvec)*dk # a numpy array

def kvec(self,indx=-1):
"""
MomSpaceBasis.kvec(i) returns ith momentum vector
MomSpaceBasis.kvec() returns all momentum vectors

param indx: index of k-vector to be returned, optional
return 3-vector (if index non-negative), or all vectors if no index specified
"""
if indx == -1:

return self._kvec
else:

return self._kvec[indx]

def nvec(self,indx=-1):
"""
MomSpaceBasis.nvec(i) returns ith lattice vector
MomSpaceBasis.nvec() returns all lattice vectors

param indx: index of lattice vector to be returned, optional
return 3-vector (if index non-negative), or all lattice vectors if no index specified

43

"""
if indx == -1:

return self._nvec
else:

return self._nvec[indx]

def dens(self,num):
"""
returns density of system if num particles are present
param num: int, number of particles
return dens: float
"""
return num/(self.Lbox)**3

def update(self,dk):
"""
Uses dk as new lattice spacing and rescales existing lattice
param dk: in 1/fm lattice spacing in momentum space
"""
self.Lbox=2.0*np.pi/dk
self._kvec = np.array(self._nvec)*dk

def __len__(self):
"""
overloading of the ’len’ function
"""
return self.ngrid

############
useful functions

def magic_numbers(basis):
"""
param basis: MomSpaceBasis object
return magic: array of magic numbers
"""
nvecs = basis.nvec()
vec=np.array(nvecs[0],dtype=int)
norm = np.dot(vec,vec)
magic=[]
for i in range(1,len(nvecs)):

vec=np.array(nvecs[i],dtype=int)
norm2 = np.dot(vec,vec)
if norm2 > norm:

magic.append(2*i)
norm=norm2

return magic

def get_dk(rho,Num):
"""
param rho: desired density
param Num: magic number of particles
return dk: grid spacing in momentum space (in 1/fm)
"""
Lbox = (Num/rho)**(1.0/3.0)
dk = 2.0*np.pi/Lbox
return dk

def spbasis_from_MomSpaceBasis(lattice_vecs,st_degen):

44

"""
converts a lattice to a single particle basis for spin-isospin degeneracy st_degen
param lattice_vecs: list of lattice vectors for 1st particle
param st_degen: spin-isospin degeneracy
return: basis as a list of momenta
"""
if st_degen != 2: # for now only neutron matter

print("Unexpected parameter st_degen")
return lattice_vecs

basis=[]
for vec in lattice_vecs:

for st in range(st_degen):
basis.append(np.array(vec,dtype=int))

return basis

###
Functions for comparisons with infinite free Fermi gas

def kF_from_density(rho,st_degen=2):
"""
Computes Fermi momentum for given density and spin/isospin degeneracy.

param rho: density in inverse fm cubed
param st_degen: spin-isospin degeneracy; default 2
return: Fermi momentum in inverse fm
"""
res = (6.0*(np.pi)**2*rho/st_degen)**(1.0/3.0)
return res

def EnergyDensity_FermiGas(kF,st_degen=2):
"""
Computes energy density of free Fermi gas at Fermi momentum and spin/isospin degeneracy
param kF: Fermi momentum in inverse fm
param st_degen: spin-isospin degeneracy; default 2
return: Energy density in MeV/fm**3
"""
pvec = np.array([kF,0.0,0.0])
erg = (st_degen*kF**3/(10.0*np.pi**2)) * Tkin(pvec)
return erg

##
Functions for CCD of neutron matter
Implementation uses only pp and hh ladders
#
##

from numba import jit
compile a few functions to gain speed; should probably done in Fortran or C++,
and called from Python

@jit(nopython=True)
def minnesota_nn(p_out,s1_out,s2_out,p_in,s1_in,s2_in,Lbox):

"""
The Minnesota potential between two neutrons, not yet anti-symmetrized
param p_out: relative out momentum

45

param p_in : relative in momentum
param s1_out, s2_out: spin projections of out particles 1 and 2
param s1_in, s2_in : spin projections of in particles 1 and 2
Lbox : size of momentum box
return: value of potential in MeV; not anti-symmetrized!
"""
parameters. VT is not active between two neutrons (no triplet)
VR = 200.0
VS = -91.85 # sign typo in Lecture Notes Physics 936, Chap. 8
kappaR = 1.487
kappaS = 0.465

qvec=p_out-p_in
q2=np.dot(qvec,qvec)

s1_i =spin2spinor(s1_in)
s2_i =spin2spinor(s2_in)
s1_o =spin2spinor(s1_out)
s2_o =spin2spinor(s2_out)

spin_part = 0.5 * (np.dot(s1_i,s1_o)*np.dot(s2_i,s2_o)
-np.dot(s1_i,s2_o)*np.dot(s2_i,s1_o))

pot = spin_part * (VR*np.exp(-0.25*q2/kappaR) / (Lbox*np.sqrt(kappaR))**3
+ VS*np.exp(-0.25*q2/kappaS) / (Lbox*np.sqrt(kappaS))**3)

pot = pot*(np.sqrt(np.pi))**3

return pot

@jit
def spin_of_index(i):

"""
Even indices of the lattive have spin up, odds have spin down
param i: index of sp_basis
return: spin as +/- 1
"""
spin = 1-2*np.remainder(i,2)
return spin

@jit
def spin2spinor(s):

"""
Makes a two-component spinor of an integer s
param s: spin = +/- 1
return: two-component numpy array [1,0] for up and [0,1] for down
"""
up =np.array([1.0,0.0])
down=np.array([0.0,1.0])
if s == 1:

return up
else:

return down

@jit
def Tkin(pvec):

"""
Kinetic energy for a momentum vector
param pvec: 3-component numpy array in inverse fm

46

return: kinetic energy of that momentum in MeV
"""
nucleon_mass = 938.92
hbarc = 197.33

More precise numbers for neutron mass and hbar follow.
For N=14, this yields E_HF = 10.3337 MeV per nucleon in HF. Benchmarked with Ragnar Stroberg.
nucleon_mass = 939.56563
hbarc = 197.3269718

p2 = np.dot(pvec,pvec)
res = 0.5*hbarc**2*p2/nucleon_mass
return res

@jit
def compute_total_Tkin(Nocc,sp_basis,dk):

"""
Computes total kinetic energy of reference state
param Nocc, sp_basis, dk: particle number, integer s.p. lattice, delta k
return: total kinetic energy
"""
erg=0.0
for i in range(Nocc):

mom_vec = sp_basis[i]
vec=np.array(mom_vec)*dk
erg=erg+Tkin(vec)

return erg

@jit
def Fock(pvec,s,sp_basis,Nocc,dk,Lbox):

"""
Fock matrix of momentum pvec in hh space
param pvec: 3-component numpy array in inverse fm
param s: spin as +/- 1 of state
param_sp_basis, Nocc, dk, Lbox : parameters of s.p. basis and system

return: Fock matrix element = kinetic energy of that momentum in MeV
"""
res = Tkin(pvec)

dum=0.0
for i in range(Nocc):

vec=sp_basis[i]*dk
si=spin_of_index(i)
p_in = 0.5*(vec-pvec)
p_out= p_in
dum = dum + (minnesota_nn(p_out,s,si, p_in, s,si,Lbox)

-minnesota_nn(p_out,s,si,-p_in,si, s,Lbox)) #antisymmetrized Minnesota

res = res+dum
return res

def compute_E_HF_simple(Nocc,sp_basis,dk):
"""
Computes HF energy of reference state
param Nocc, sp_basis, dk: particle number, integer s.p. lattice, delta k
return: total HF energy
"""
erg=compute_total_Tkin(Nocc,sp_basis,dk)

47

pot=0.0
for i in range(Nocc):

momi=sp_basis[i]*dk
si = spin_of_index(i)
for j in range(Nocc):

momj=sp_basis[j]*dk
sj = spin_of_index(j)
p_rel = 0.5*(momi-momj)
pot = pot + 0.5* (minnesota_nn(p_rel,si,sj, p_rel,si,sj,Lbox)

- minnesota_nn(p_rel,si,sj,-p_rel,sj,si,Lbox))

erg = erg+pot
return erg

def get_channels(sp_basis,start1,end1,start2,end2,identical,other_channels=None):
"""
Returns channels for coupled cluster based on Minnesota potential
param sp_Basis: A single-particle basis
param start1: index to start for particle 1
param end1: index to end for particle 1
param start2: index to start for particle 2
param end2: index to end for particle 2
param identical: True for hh or pp, False for hp
param other_channels: list of other channels to compare with
return: channels, p_rel, t2amp. channels is a list of p12, where p12 is a momentum vector;

p_rel is a nested list with relative momenta and spins for each channel
"""
channel=[]
p_rel=[]
for i, mom_vecs1 in enumerate(sp_basis[start1:end1]):

#vec1=np.array(mom_vecs1,dtype=int)
vec1=mom_vecs1
spin1=spin_of_index(i)

for j, mom_vecs2 in enumerate(sp_basis[start2:end2]):
if identical and i==j: continue #Fortran cycle
#vec2=np.array(mom_vecs2,dtype=int)
vec2=mom_vecs2
spin2=spin_of_index(j)

p12 = vec1+vec2
prel= vec1-vec2
spins=np.array([spin1,spin2],dtype=int)
ps=[prel,spins]

new=True
needed=True
if other_channels is not None: #check whether we need this channel

needed=False
for chan_o in other_channels:

if (chan_o==p12).all():
needed=True
break

if needed: #check whether this channel exists already
for ipos, chan in enumerate(channel):

if (chan==p12).all():
new=False
break

if needed and new:

48

channel.append(p12)
p_rel.append([ps])

if needed and not new:
p_rel[ipos].append(ps)

return channel, p_rel

def setup_T2_amplitudes(sp_basis,NN,st_degen):
"""
returns the t2 amplitudes and t2 channels
param sp_basis: a sp_basis
param NN: neutron number
param st_degen: 2 for the moment, spin-isospin degeneracy
return: hh_channels, pp_channels, p_rel_hh, p_rel_pp, t2amp

these are the hh and pp channels of T2, lists of the relative momenta,
and t2amps as a list of numpy arrays set to zero

"""
num_states = len(sp_basis)

hh_channels, p_rel_hh = get_channels(sp_basis,0,NN,0,NN,True)
print(’hh channels=’, len(hh_channels))

pp_channels, p_rel_pp = get_channels(sp_basis,NN,num_states,NN,num_states,True,hh_channels)
print(’pp channels=’, len(pp_channels))

if len(pp_channels) != len(hh_channels): print(’pp and hh channels do not match’)

ordered_pp_channel=[]
ordered_p_rel_pp=[]
for i, chanhh in enumerate(hh_channels):

for j, chanpp in enumerate(pp_channels):
if (chanpp==chanhh).all():

ordered_pp_channel.append(chanpp)
ordered_p_rel_pp.append(p_rel_pp[j])
break

pp_channels = ordered_pp_channel
p_rel_pp = ordered_p_rel_pp

set t2 amplitudes to zero in each channel
t2amp = fill_pot(Lbox, dk, pp_channels, hh_channels, p_rel_pp, p_rel_hh, True)

return hh_channels, pp_channels, p_rel_hh, p_rel_pp, t2amp

def fill_pot(Lbox, dk, channels_out, channels_in, p_rel_out, p_rel_in, T2amp=False):
"""
Fills lists of matrices such as Vhhhh, Vpphh, Vpppp, t2_pphh
param Lbox: Lbox
param dk: dk
param channels_out, channels_in: the channels we have
param p_rel_out, p_rel_in: the list of [prel, [s1,s2]]
param T2amp=False: Set to True if t2_pphh needs to be computed
return: The object of desire as a list of numpy matrices.

Contain matrix elements for potentials, zeros if T2amp=True is requested.
"""
Vpot=[]
for i, chan_in in enumerate(channels_in):

49

dim_in = len(p_rel_in[i])
dim_out= len(p_rel_out[i])
Vpot_chan=np.zeros((dim_out,dim_in))
if not T2amp:

for ii, ps_i in enumerate(p_rel_in[i]):
[pii, [s1, s2]] = ps_i
pii = pii*dk*0.5
for jj, ps_j in enumerate(p_rel_out[i]):

if dim_in == dim_out and jj > ii: continue
[pjj, [ss1, ss2]] = ps_j
pjj = pjj*dk*0.5
Vpot_chan[jj,ii] = (minnesota_nn(pjj,ss1,ss2, pii,s1,s2,Lbox)

-minnesota_nn(-pjj,ss2,ss1, pii,s1,s2,Lbox))
if dim_in == dim_out : Vpot_chan[ii,jj] = Vpot_chan[jj,ii]

Vpot.append(Vpot_chan)
return Vpot

def init_V(Lbox, dk, hhchannels, ppchannels, p_relhh, p_relpp,zeros=False):
"""
Sets up Vhhhh, Vpphh, and Vpppp.

return: Vhhhh, Vpphh, Vpppp as a lists of numpy arrays
"""
Vhhhh = fill_pot(Lbox, dk, hhchannels, hhchannels, p_relhh, p_relhh,zeros)
Vpphh = fill_pot(Lbox, dk, ppchannels, hhchannels, p_relpp, p_relhh,zeros)
Vpppp = fill_pot(Lbox, dk, ppchannels, ppchannels, p_relpp, p_relpp,zeros)

return Vhhhh, Vpphh, Vpppp

@jit
def make_diagram(obj1,obj2,fac):

"""
Makes diagrams for pp or hh ladders as matrix-matrix multiplications
"""
hbar_pphh=[]
dim1=len(obj1)
for chan in range(dim1):

mat1 = obj1[chan]
mat2 = obj2[chan]
hbar_pphh.append(fac*np.matmul(mat1,mat2))

return hbar_pphh

def make_diagrams2_3(t2_pphh,fabij):
hbar_pphh=[]
for i, t2_mat in enumerate(t2_pphh):

f_mat = fabij[i]
hbar_mat = t2_mat*f_mat
hbar_pphh.append(hbar_mat)

return hbar_pphh

def compute_hbar(v_pppp,v_pphh,v_hhhh,t2_pphh,fabij):
diagram1 = v_pphh.copy()
diagram23 = make_diagrams2_3(t2_pphh, fabij)
diagram4 = make_diagram(v_pppp,t2_pphh,0.5)
diagram5 = make_diagram(t2_pphh,v_hhhh,0.5)

50

hbar_pphh=[]
for i in range(len(t2_pphh)):

mat = (diagram1[i]
+ diagram23[i]
+ diagram4[i]
+ diagram5[i])

hbar_pphh.append(mat)

return hbar_pphh

def get_energy_denominator(hh_channels,p_rel_pp,p_rel_hh,sp_basis,Nocc,dk,Lbox):
res=[]
fabij=[]
for i, Ptot in enumerate(hh_channels):

dimhh=len(p_rel_hh[i])
dimpp=len(p_rel_pp[i])
res_mat = np.zeros((dimpp,dimhh))
f_mat = np.zeros((dimpp,dimhh))
for ii, psh_rel in enumerate(p_rel_hh[i]):

[pij, [si, sj]] = psh_rel
p_i = (Ptot+pij)//2
p_i = p_i + np.array([Nmax,Nmax,Nmax],dtype=int)
p_j = (Ptot-pij)//2
p_j = p_j + np.array([Nmax,Nmax,Nmax],dtype=int)
ssi = (1-si)//2
ssj = (1-sj)//2
fii = fock_mtx4[p_i[0],p_i[1],p_i[2],ssi]
fjj = fock_mtx4[p_j[0],p_j[1],p_j[2],ssj]
for jj, psp_rel in enumerate(p_rel_pp[i]):

[pab, [sa, sb]] = psp_rel
p_a = (Ptot+pab)//2
p_a = p_a + np.array([Nmax,Nmax,Nmax],dtype=int)
p_b = (Ptot-pab)//2
p_b = p_b + np.array([Nmax,Nmax,Nmax],dtype=int)
ssa = (1-sa)//2
ssb = (1-sb)//2
faa = fock_mtx4[p_a[0],p_a[1],p_a[2],ssa]
fbb = fock_mtx4[p_b[0],p_b[1],p_b[2],ssb]

res_mat[jj,ii] = 1.0 / (fii + fjj - faa - fbb)
f_mat[jj,ii] = faa + fbb - fii - fjj

res.append(res_mat)
fabij.append(f_mat)

return res, fabij

def get_t2_from_mbpt(Vpphh,denom):
"""
param Vpphh: Vpphh
param denom: energy denominator in pphh format
return t2: quotient of both, element for element
"""
res = []
for i, vv in enumerate(Vpphh):

dd = denom[i]
res_mat = vv*dd #how simple in python; element by element multiply
res.append(res_mat)

return res

def compute_E_CCD(Vpphh,T2pphh):

51

erg=0.0
erg2=0.0

for i, t2mat in enumerate(T2pphh):
vmat = Vpphh[i]
erg = erg + 0.25*np.sum(vmat*t2mat)

return erg

def compute_Fock_4(sp_basis,Nocc,dk,Lbox,Nmax):
fock_mtx4=np.zeros(shape=(2*Nmax+1, 2*Nmax+1, 2*Nmax+1, 2))
for i, vec in enumerate(sp_basis):

pvec=vec*dk
spin=spin_of_index(i)
si = (1 - spin)//2
px=vec[0]+Nmax
py=vec[1]+Nmax
pz=vec[2]+Nmax
fock_mtx4[px,py,pz,si] = Fock(pvec,spin,sp_basis,Nocc,dk,Lbox)

return fock_mtx4

#####################################
########### Main Program starts here

from timeit import default_timer as timer
for timing purposes

progstart=timer()

Nmax=1
kmax=1.0
mbase = MomSpaceBasis(Nmax,kmax)
lattice=mbase.nvec()

set particle number
NN=14
st_degen=2 # spin up and down
print("chosen N =", NN)
print("magic numbers", magic_numbers(mbase))

set density
rho=0.08

dk = get_dk(rho,NN)

mbase.update(dk)
Lbox = mbase.Lbox

get single particle basis

sp_basis = spbasis_from_MomSpaceBasis(lattice,st_degen)
num_states = len(sp_basis)

print(’number of s.p. states:’, num_states)

print out a few facts of the reference state
total_Tkin = compute_total_Tkin(NN,sp_basis,dk)
print(’total Tkin per particle =’, total_Tkin/NN)

k_fermi = kF_from_density(rho)

52

print("Fermi momentum =", k_fermi)

E_gas = EnergyDensity_FermiGas(k_fermi)

print("Energy per neutron of infinite free Fermi gas", E_gas/rho)

E_HF = compute_E_HF_simple(NN,sp_basis,dk)
E_HF = E_HF/NN
print("HF energy per neutron =", E_HF)

now we start our business ...
get all channels and two-body states within those channels; set T2 to zero
hh_channels, pp_channels, p_rel_hh, p_rel_pp, t2_pphh = setup_T2_amplitudes(sp_basis,NN,st_degen)

get some insight in how big this all is
count=0
for i, channel in enumerate(p_rel_hh):

dim=len(p_rel_hh[i])
count=count+dim

print(’hh number of total combinations’, count)

count=0
for i, channel in enumerate(p_rel_pp):

dim=len(p_rel_pp[i])
count=count+dim

print(’pp number of total combinations’, count)

print("get v_hhhh, v_pphh, v_pppp")
start = timer()
v_hhhh, v_pphh, v_pppp = init_V(Lbox, dk, hh_channels, pp_channels, p_rel_hh, p_rel_pp)
end = timer()
print("what a hog!", end-start, ’seconds’)

print("compute energy denominator")
start = timer()
fock_mtx4 = compute_Fock_4(sp_basis,NN,dk,Lbox,Nmax)
denom_pphh, f_abij = get_energy_denominator(pp_channels,p_rel_pp,p_rel_hh,sp_basis,NN,dk,Lbox)
end = timer()
print("that’s faster", end-start, ’seconds’)

print("Initialize T2 from MBPT2")
t2_pphh = get_t2_from_mbpt(v_pphh,denom_pphh)

erg = compute_E_CCD(v_pphh,t2_pphh)
print(’MBPT2 correlation energy per neutron =’, erg/NN)

print("start CCD iterations ...")

niter=200
mix=0.99
erg_old=0.0
eps=1.e-8
for iter in range(niter):

start = timer()
hbar_pphh = compute_hbar(v_pppp,v_pphh,v_hhhh,t2_pphh,f_abij)

53

end = timer()
print("time of making Hbar:", end-start, ’seconds’)

t2_new = get_t2_from_mbpt(hbar_pphh,denom_pphh)

for i in range(len(t2_new)):
t2_new[i] = t2_pphh[i] + t2_new[i]

erg = compute_E_CCD(v_pphh,t2_new)

myeps = abs(erg-erg_old)/abs(erg)
if myeps < eps: break
erg_old=erg

print("iter=", iter, "Correlation energy per neutron=", erg/NN, ", epsilon=", myeps)

for i in range(len(t2_pphh)):
t2_pphh[i] = mix*t2_new[i] + (1.0-mix)*t2_pphh[i]

print("Correlation energy per neutron= ", erg/NN)

progend=timer()
print(’total time in seconds’, progend-progstart)

===== =====

Benchmarks with the Minnesota potential
For the benchmarks, let us use a nucleon mass m = 938.92 MeV, ~ = 197.33
MeV fm, and c = 1. For N = 14 neutrons at a density ρ = 0.08fm−3 one
finds Tkin(|φ0〉)/N = 22.427553 MeV, and EHF /N = 10.3498 MeV. In model
spaces with Nmax = 1 and Nmax = 2, and using only the first five diagrams of
Figure 1.11 for the CCD calculation, yields the correlation energies per particle
of Ec/N = −0.2118 MeV and Ec/N = −0.6923 MeV, respectively.

54

Chapter 3

From Structure to
Reactions

Nuclear coupled-cluster theory has also been used to describe aspects of nuclear
reactions, namely photo reactions and computations of optical potentials. In
what follows, we want to discuss these approaches.

Electroweak reactions
Let us assume we probe a nucleus with an electroweak probe (e.g. via photon or
Z-boson exchange). The corresponding operator Θ̂ introduces transitions in the
nucleus. For photo reactions, the relevant operator is the dipole operator

Θ̂ =
A∑

1=1
qi(~ri − ~RCoM). (3.1)

Here qi is the charge of nucleon i, and ~RCoM is the position of the center of
mass. The structure function or response function describing the reaction is

S(ω) ≡
∑
f

〈ψ0|Θ̂†|ψf 〉〈ψf |Θ̂|ψ0〉δ(Ef − E0 − ω). (3.2)

Here, the sum is over all final states. The structure function is difficult to
compute because the sum is over (infinitely many) continuum states, and we
seek a simpler formulation. The key idea is that the Lorentz integral transform
(LIT) of the structure function

c© 2018, Thomas Papenbrock. Released under CC Attribution-NonCommercial 4.0 license

L(ω0,Γ) ≡ Γ
π

∫
dω

S(ω)
(ω − ω0)2 + Γ2 (3.3)

= Γ
π
〈ψ0|Θ̂†

1
H − E0 − ω0 + iΓ

1
H − E0 − ω0 − iΓ

Θ̂|ψ0〉.

We note that the LIT L(ω0,Γ) of the structure function is a ground-state
expectation value and thus much easier to compute than the structure function
itself. We also note that the LIT is not invertible (mathematically speaking),
but making some assumptions about the structure function, and imposing a
finite resolution Γ alleviates this problem in practical computation.

We next rewrite the LIT for coupled cluster using the shorthand z ≡ E0 +
ω0 + iΓ as

L(ω0,Γ) ≡ Γ
π
〈ψ̃L(z∗)|ψ̃R(z)〉, (3.4)

with |ψ̃R(z)〉 and 〈ψ̃L(z∗)| fulfilling(
H − z

)
|ψ̃R(z)〉 = Θ|φ0〉, (3.5)

〈ψ̃L(z∗)|
(
H − z∗

)
= 〈φL|. (3.6)

Here, 〈φL| is the left ground state, i.e. the left eigenstate of the similarity-
transformed Hamiltonian. Note that in the coupled-cluster formulation we have
distinguished between left and right states (as these are not adjoints of each
other), and replaced all operators by their similarity transformations. Making
the ansatz

|ψ̃R(z)〉 = R̂|φ0〉 (3.7)

=

r0(z) +
∑
ia

rai (z)a†aai + 1
4
∑
ijab

rabij (z)a†aa
†
bajai + · · ·

 |φ0〉

for the right state, and

〈ψ̃L(z∗)| = 〈φL|L̂ (3.8)

= 〈φL|

l0(z) +
∑
ia

lia(z)a†iaa + 1
4
∑
ijab

lijab(z)a
†
ia
†
jabaa + · · ·


for the left state, make the Eq. (3.5) linear systems of equations that can be

solved for the parameters r0, r
a
i , r

ab
ij and l0, lia, l

ij
ab for each value of z. The LIT

then becomes

56

L(z) = l0(z)r0(z) +
∑
ia

lia(z)rai (z) + 1
4 l
ij
ab(z)r

ab
ij (z) (3.9)

in the CCSD approximation. For details, please see [“Giant and pigmy dipole
resonances in 4He, 16,22O, and 40Ca from chiral nucleon-nucleon interactions,”
S. Bacca, N. Barnea, G. Hagen, M. Miorelli, G. Orlandini, and T. Papenbrock,
Phys. Rev. C 90, 064619 (2014)].

Computing optical potentials from microscopic
input
The single-particle Green’s function

G(α, β,E) ≡ 〈ψ0|aα
1

E − (H − E0) + iη
a†β |ψ0〉+ 〈ψ0|a†β

1
E − (H − E0)− iη aα|ψ0〉

(3.10)

describes the propagation of particles and holes in the nucleus with a ground
state |ψ0〉 and energy E0. The Green’s function fulfills the Dyson equation

G = G(0) +G(0)Σ∗G, (3.11)

where Σ∗ is the self energy and G(0) is the Hartree-Fock Green’s function

G(0)(α, β,E) ≡ 〈φ0|aα
1

E − (HHF − EHF) + iη
a†β |φ0〉+ 〈φ0|a†β

1
E − (HHF − EHF)− iη aα|φ0〉

(3.12)

= δβα

(
Θ(α− F)
E − εα + iη

+ Θ(F − α)
E − εα − iη

)
.

Here, Θ() denotes the unit step function and F labels the index of the Fermi
surface. The key point is now that the optical potential Σ′ (which describes the
reaction of a single nucleon with the nucleus) is related to the self energy and
the Hartree-Fock potential UHF by [F. Capuzzi and C. Mahaux, “Projection
operator approach to the self-energy,” Ann. Phys. (NY) 245, 147 (1996)]

Σ′ ≡ Σ∗ + UHF . (3.13)

The idea is thus as follows. Starting from a Hartree-Fock calculations enables
us to compute the Hartree-Fock potential UHF and the Hartree-Fock Green’s

57

function (3.12). Computing the Green’s function (3.10) in coupled clusters, and
inverting the Dyson equation (3.11) using

Σ∗ =
(
G(0)

)−1
−G−1 (3.14)

thus allows us to compute the optical potential. We note that the Green’s
function (3.10) resembles in its structure the LIT (3.3), and we will indeed use
a similar approach to compute this object with the coupled-cluster method.
Indeed, we compute

(
E − (H − E0) + iη

)
|ψ̃R〉 = a†β |φ0〉, (3.15)

〈ψ̃L|
(
E − (E0 −H)− iη

)
= 〈φL|a†β , (3.16)

by making the ansatz (3.7) and (3.8) for the right and left states, respectively,
solve the resulting linear systems, and then compute G(α, β,E) = 〈φL|aα|ψ̃R〉+
〈ψ̃L|aα|φ0〉.

We note that a high quality optical potential can only be obtained if the
structure of the nucleus is computed with a good accuracy, i.e. in good agreement
to data on binding and separation energies, and charge and matter radii. For
details, please see [“Optical potential from first principles,” J. Rotureau, P.
Danielewicz, G. Hagen, F. Nunes, and T. Papenbrock, Phys. Rev. C 95,
024315 (2017); arXiv:1611.04554]. We also note that this procedure must be
repeated for any nucleus of interest, because the optical potential depends on
the nucleus under consideration. Once the optical potential Σ′ is computed, the
single-particle Schroedinger equation

(
−~2∆

2m + Σ′
)
ξ = Eξ (3.17)

describes the interaction of a single nucleon (and wave function ξ) with the
nucleus.

Finally, we note that this approach does not depend on solving the nucleus
A with the coupled-cluster method. Alternatives, such as the IMSRG or Self-
Consistent Green’s Function methods could also be used.

58

	The Coupled-Cluster Method
	paragraph>
	paragraph>
	paragraph>
	paragraph>
	paragraph>
	Nucleonic Matter
	paragraph>
	paragraph>
	From Structure to Reactions

