
Full configuration interaction theory

Morten Hjorth-Jensen

National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

Jul 19, 2018

Slater determinants as basis states, Repetition
The simplest possible choice for many-body wavefunctions are product wave-

functions. That is

Ψ(x1, x2, x3, . . . , xA) ≈ φ1(x1)φ2(x2)φ3(x3) . . .

because we are really only good at thinking about one particle at a time. Such
product wavefunctions, without correlations, are easy to work with; for example,
if the single-particle states φi(x) are orthonormal, then the product wavefunctions
are easy to orthonormalize.

Similarly, computing matrix elements of operators are relatively easy, because
the integrals factorize.

The price we pay is the lack of correlations, which we must build up by
using many, many product wavefunctions. (Thus we have a trade-off: compact
representation of correlations but difficult integrals versus easy integrals but
many states required.)

Slater determinants as basis states, repetition
Because we have fermions, we are required to have antisymmetric wavefunc-

tions, e.g.
Ψ(x1, x2, x3, . . . , xA) = −Ψ(x2, x1, x3, . . . , xA)

etc. This is accomplished formally by using the determinantal formalism

Ψ(x1, x2, . . . , xA) = 1√
A!

det

∣∣∣∣∣∣∣∣∣
φ1(x1) φ1(x2) . . . φ1(xA)
φ2(x1) φ2(x2) . . . φ2(xA)

...
φA(x1) φA(x2) . . . φA(xA)

∣∣∣∣∣∣∣∣∣
Product wavefunction + antisymmetry = Slater determinant.

c© 2013-2018, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0
license

http://www.nscl.msu.edu/
https://www.pa.msu.edu/
http://www.msu.edu/

Slater determinants as basis states

Ψ(x1, x2, . . . , xA) = 1√
A!

det

∣∣∣∣∣∣∣∣∣
φ1(x1) φ1(x2) . . . φ1(xA)
φ2(x1) φ2(x2) . . . φ2(xA)

...
φA(x1) φA(x2) . . . φA(xA)

∣∣∣∣∣∣∣∣∣
Properties of the determinant (interchange of any two rows or any two columns
yields a change in sign; thus no two rows and no two columns can be the same)
lead to the Pauli principle:

• No two particles can be at the same place (two columns the same); and

• No two particles can be in the same state (two rows the same).

Slater determinants as basis states
As a practical matter, however, Slater determinants beyond N = 4 quickly

become unwieldy. Thus we turn to the occupation representation or second
quantization to simplify calculations.

The occupation representation or number representation, using fermion
creation and annihilation operators, is compact and efficient. It is also
abstract and, at first encounter, not easy to internalize. It is inspired by other
operator formalism, such as the ladder operators for the harmonic oscillator
or for angular momentum, but unlike those cases, the operators do not have
coordinate space representations.

Instead, one can think of fermion creation/annihilation operators as a game
of symbols that compactly reproduces what one would do, albeit clumsily, with
full coordinate-space Slater determinants.

Quick repetition of the occupation representation
We start with a set of orthonormal single-particle states {φi(x)}. (Note: this

requirement, and others, can be relaxed, but leads to a more involved formalism.)
Any orthonormal set will do.

To each single-particle state φi(x) we associate a creation operator â†i and
an annihilation operator âi.

When acting on the vacuum state |0〉, the creation operator â†i causes a
particle to occupy the single-particle state φi(x):

φi(x)→ â†i |0〉

2

Quick repetition of the occupation representation
But with multiple creation operators we can occupy multiple states:

φi(x)φj(x′)φk(x′′)→ â†i â
†
j â
†
k|0〉.

Now we impose antisymmetry, by having the fermion operators satisfy anti-
commutation relations:

â†i â
†
j + â†j â

†
i = [â†i , â

†
j]+ = {â†i , â

†
j} = 0

so that
â†i â
†
j = −â†j â

†
i

Quick repetition of the occupation representation
Because of this property, automatically â†i â

†
i = 0, enforcing the Pauli exclusion

principle. Thus when writing a Slater determinant using creation operators,

â†i â
†
j â
†
k . . . |0〉

each index i, j, k, . . . must be unique.
For some relevant exercises with solutions see chapter 8 of Lecture Notes in

Physics, volume 936.

Full Configuration Interaction Theory
We have defined the ansatz for the ground state as

|Φ0〉 =

∏
i≤F

â†i

 |0〉,
where the index i defines different single-particle states up to the Fermi level.
We have assumed that we have N fermions. A given one-particle-one-hole (1p1h)
state can be written as

|Φai 〉 = â†aâi|Φ0〉,

while a 2p2h state can be written as

|Φabij 〉 = â†aâ
†
bâj âi|Φ0〉,

and a general NpNh state as

|Φabc...ijk...〉 = â†aâ
†
bâ
†
c . . . âkâj âi|Φ0〉.

3

http://www.springer.com/us/book/9783319533353
http://www.springer.com/us/book/9783319533353

Full Configuration Interaction Theory
We can then expand our exact state function for the ground state as

|Ψ0〉 = C0|Φ0〉+
∑
ai

Cai |Φai 〉+
∑
abij

Cabij |Φabij 〉+ · · · = (C0 + Ĉ)|Φ0〉,

where we have introduced the so-called correlation operator

Ĉ =
∑
ai

Cai â
†
aâi +

∑
abij

Cabij â
†
aâ
†
bâj âi + . . .

Since the normalization of Ψ0 is at our disposal and since C0 is by hypothesis
non-zero, we may arbitrarily set C0 = 1 with corresponding proportional changes
in all other coefficients. Using this so-called intermediate normalization we have

〈Ψ0|Φ0〉 = 〈Φ0|Φ0〉 = 1,

resulting in
|Ψ0〉 = (1 + Ĉ)|Φ0〉.

Full Configuration Interaction Theory
We rewrite

|Ψ0〉 = C0|Φ0〉+
∑
ai

Cai |Φai 〉+
∑
abij

Cabij |Φabij 〉+ . . . ,

in a more compact form as

|Ψ0〉 =
∑
PH

CPHΦPH =
(∑
PH

CPHÂ
P
H

)
|Φ0〉,

where H stands for 0, 1, . . . , n hole states and P for 0, 1, . . . , n particle states.
Our requirement of unit normalization gives

〈Ψ0|Φ0〉 =
∑
PH

|CPH |2 = 1,

and the energy can be written as

E = 〈Ψ0|Ĥ|Φ0〉 =
∑

PP ′HH′

C∗PH 〈ΦPH |Ĥ|ΦP
′

H′〉CP
′

H′ .

Full Configuration Interaction Theory
Normally

E = 〈Ψ0|Ĥ|Φ0〉 =
∑

PP ′HH′

C∗PH 〈ΦPH |Ĥ|ΦP
′

H′〉CP
′

H′ ,

4

is solved by diagonalization setting up the Hamiltonian matrix defined by the
basis of all possible Slater determinants. A diagonalization is equivalent to
finding the variational minimum of

〈Ψ0|Ĥ|Φ0〉 − λ〈Ψ0|Φ0〉,

where λ is a variational multiplier to be identified with the energy of the system.
The minimization process results in

δ
[
〈Ψ0|Ĥ|Φ0〉 − λ〈Ψ0|Φ0〉

]
=

∑
P ′H′

{
δ[C∗PH]〈ΦPH |Ĥ|ΦP

′

H′〉CP
′

H′ + C∗PH 〈ΦPH |Ĥ|ΦP
′

H′〉δ[CP
′

H′]− λ(δ[C∗PH]CP
′

H′ + C∗PH δ[CP
′

H′]
}

= 0.

Since the coefficients δ[C∗PH] and δ[CP ′

H′] are complex conjugates it is necessary
and sufficient to require the quantities that multiply with δ[C∗PH] to vanish.

Full Configuration Interaction Theory
This leads to ∑

P ′H′

〈ΦPH |Ĥ|ΦP
′

H′〉CP
′

H′ − λCPH = 0,

for all sets of P and H.
If we then multiply by the corresponding C∗PH and sum over PH we obtain∑

PP ′HH′

C∗PH 〈ΦPH |Ĥ|ΦP
′

H′〉CP
′

H′ − λ
∑
PH

|CPH |2 = 0,

leading to the identification λ = E. This means that we have for all PH sets∑
P ′H′

〈ΦPH |Ĥ − E|ΦP
′

H′〉 = 0. (1)

Full Configuration Interaction Theory
An alternative way to derive the last equation is to start from

(Ĥ − E)|Ψ0〉 = (Ĥ − E)
∑
P ′H′

CP
′

H′ |ΦP
′

H′〉 = 0,

and if this equation is successively projected against all ΦPH in the expansion of
Ψ, then the last equation on the previous slide results. As stated previously, one
solves this equation normally by diagonalization. If we are able to solve this
equation exactly (that is numerically exactly) in a large Hilbert space (it will
be truncated in terms of the number of single-particle states included in the
definition of Slater determinants), it can then serve as a benchmark for other
many-body methods which approximate the correlation operator Ĉ.

5

Example of a Hamiltonian matrix
Suppose, as an example, that we have six fermions below the Fermi level. This

means that we can make at most 6p− 6h excitations. If we have an infinity of
single particle states above the Fermi level, we will obviously have an infinity
of say 2p− 2h excitations. Each such way to configure the particles is called a
configuration. We will always have to truncate in the basis of single-particle
states. This gives us a finite number of possible Slater determinants. Our
Hamiltonian matrix would then look like (where each block can have a large
dimensionalities):

0p− 0h 1p− 1h 2p− 2h 3p− 3h 4p− 4h 5p− 5h 6p− 6h
0p− 0h x x x 0 0 0 0
1p− 1h x x x x 0 0 0
2p− 2h x x x x x 0 0
3p− 3h 0 x x x x x 0
4p− 4h 0 0 x x x x x
5p− 5h 0 0 0 x x x x
6p− 6h 0 0 0 0 x x x

with a two-body force. Why are there non-zero blocks of elements?

Example of a Hamiltonian matrix with a Hartree-Fock basis
If we use a Hartree-Fock basis, this corresponds to a particular unitary transfor-

mation where matrix elements of the type 〈0p− 0h|Ĥ|1p− 1h〉 = 〈Φ0|Ĥ|Φai 〉 = 0
and our Hamiltonian matrix becomes

0p− 0h 1p− 1h 2p− 2h 3p− 3h 4p− 4h 5p− 5h 6p− 6h
0p− 0h x̃ 0 x̃ 0 0 0 0
1p− 1h 0 x̃ x̃ x̃ 0 0 0
2p− 2h x̃ x̃ x̃ x̃ x̃ 0 0
3p− 3h 0 x̃ x̃ x̃ x̃ x̃ 0
4p− 4h 0 0 x̃ x̃ x̃ x̃ x̃
5p− 5h 0 0 0 x̃ x̃ x̃ x̃
6p− 6h 0 0 0 0 x̃ x̃ x̃

Shell-model jargon
If we do not make any truncations in the possible sets of Slater determinants

(many-body states) we can make by distributing A nucleons among n single-
particle states, we call such a calculation for Full configuration interaction
theory

If we make truncations, we have different possibilities

• The standard nuclear shell-model. Here we define an effective Hilbert space
with respect to a given core. The calculations are normally then performed

6

for all many-body states that can be constructed from the effective Hilbert
spaces. This approach requires a properly defined effective Hamiltonian

• We can truncate in the number of excitations. For example, we can limit
the possible Slater determinants to only 1p− 1h and 2p− 2h excitations.
This is called a configuration interaction calculation at the level of singles
and doubles excitations, or just CISD.

• We can limit the number of excitations in terms of the excitation energies.
If we do not define a core, this defines normally what is called the no-core
shell-model approach.

What happens if we have a three-body interaction and a Hartree-Fock basis?

FCI and the exponential growth
Full configuration interaction theory calculations provide in principle, if we

can diagonalize numerically, all states of interest. The dimensionality of the
problem explodes however quickly.

The total number of Slater determinants which can be built with say N
neutrons distributed among n single particle states is(

n
N

)
= n!

(n−N)!N ! .

For a model space which comprises the first for major shells only 0s, 0p, 1s0d
and 1p0f we have 40 single particle states for neutrons and protons. For the
eight neutrons of oxygen-16 we would then have(

40
8

)
= 40!

(32)!8! ∼ 109,

and multiplying this with the number of proton Slater determinants we end up
with approximately with a dimensionality d of d ∼ 1018.

Exponential wall
This number can be reduced if we look at specific symmetries only. However,

the dimensionality explodes quickly!

• For Hamiltonian matrices of dimensionalities which are smaller than
d ∼ 105, we would use so-called direct methods for diagonalizing the
Hamiltonian matrix

• For larger dimensionalities iterative eigenvalue solvers like Lanczos’ method
are used. The most efficient codes at present can handle matrices of
d ∼ 1010.

7

A non-practical way of solving the eigenvalue problem
To see this, we look at the contributions arising from

〈ΦPH | = 〈Φ0|

in Eq. (1), that is we multiply with 〈Φ0| from the left in

(Ĥ − E)
∑
P ′H′

CP
′

H′ |ΦP
′

H′〉 = 0.

If we assume that we have a two-body operator at most, Slater’s rule gives then
an equation for the correlation energy in terms of Cai and Cabij only. We get then

〈Φ0|Ĥ − E|Φ0〉+
∑
ai

〈Φ0|Ĥ − E|Φai 〉Cai +
∑
abij

〈Φ0|Ĥ − E|Φabij 〉Cabij = 0,

or
E − E0 = ∆E =

∑
ai

〈Φ0|Ĥ|Φai 〉Cai +
∑
abij

〈Φ0|Ĥ|Φabij 〉Cabij ,

where the energy E0 is the reference energy and ∆E defines the so-called
correlation energy. The single-particle basis functions could be the results of a
Hartree-Fock calculation or just the eigenstates of the non-interacting part of
the Hamiltonian.

A non-practical way of solving the eigenvalue problem
To see this, we look at the contributions arising from

〈ΦPH | = 〈Φ0|

in Eq. (1), that is we multiply with 〈Φ0| from the left in

(Ĥ − E)
∑
P ′H′

CP
′

H′ |ΦP
′

H′〉 = 0.

A non-practical way of solving the eigenvalue problem
If we assume that we have a two-body operator at most, Slater’s rule gives

then an equation for the correlation energy in terms of Cai and Cabij only. We
get then

〈Φ0|Ĥ − E|Φ0〉+
∑
ai

〈Φ0|Ĥ − E|Φai 〉Cai +
∑
abij

〈Φ0|Ĥ − E|Φabij 〉Cabij = 0,

or
E − E0 = ∆E =

∑
ai

〈Φ0|Ĥ|Φai 〉Cai +
∑
abij

〈Φ0|Ĥ|Φabij 〉Cabij ,

where the energy E0 is the reference energy and ∆E defines the so-called
correlation energy. The single-particle basis functions could be the results of a
Hartree-Fock calculation or just the eigenstates of the non-interacting part of
the Hamiltonian.

8

Rewriting the FCI equation
In our notes on Hartree-Fock calculations, we have already computed the

matrix 〈Φ0|Ĥ|Φa
i 〉 and 〈Φ0|Ĥ|Φab

ij 〉. If we are using a Hartree-Fock basis, then
the matrix elements 〈Φ0|Ĥ|Φa

i 〉 = 0 and we are left with a correlation energy
given by

E − E0 = ∆EHF =
∑
abij

〈Φ0|Ĥ|Φabij 〉Cabij .

Rewriting the FCI equation
Inserting the various matrix elements we can rewrite the previous equation as

∆E =
∑
ai

〈i|f̂ |a〉Cai +
∑
abij

〈ij|v̂|ab〉Cabij .

This equation determines the correlation energy but not the coefficients C.

Rewriting the FCI equation, does not stop here
We need more equations. Our next step is to set up

〈Φai |Ĥ−E|Φ0〉+
∑
bj

〈Φai |Ĥ−E|Φbj〉Cbj+
∑
bcjk

〈Φai |Ĥ−E|Φbcjk〉Cbcjk+
∑
bcdjkl

〈Φai |Ĥ−E|Φbcdjkl〉Cbcdjkl = 0,

as this equation will allow us to find an expression for the coefficents Cai since
we can rewrite this equation as

〈i|f̂ |a〉+〈Φai |Ĥ|Φai 〉Cai +
∑
bj 6=ai

〈Φai |Ĥ|Φbj〉Cbj+
∑
bcjk

〈Φai |Ĥ|Φbcjk〉Cbcjk+
∑
bcdjkl

〈Φai |Ĥ|Φbcdjkl〉Cbcdjkl = ECai .

Rewriting the FCI equation, please stop here
We see that on the right-hand side we have the energy E. This leads to a

non-linear equation in the unknown coefficients. These equations are normally
solved iteratively (that is we can start with a guess for the coefficients Cai). A
common choice is to use perturbation theory for the first guess, setting thereby

Cai = 〈i|f̂ |a〉
εi − εa

.

Rewriting the FCI equation, more to add
The observant reader will however see that we need an equation for Cbcjk and

Cbcdjkl as well. To find equations for these coefficients we need then to continue
our multiplications from the left with the various ΦPH terms.

9

For Cbcjk we need then

〈Φabij |Ĥ − E|Φ0〉+
∑
kc

〈Φabij |Ĥ − E|Φck〉Cck+

∑
cdkl

〈Φabij |Ĥ−E|Φcdkl 〉Ccdkl+
∑

cdeklm

〈Φabij |Ĥ−E|Φcdeklm〉Ccdeklm+
∑

cdefklmn

〈Φabij |Ĥ−E|Φ
cdef
klmn〉C

cdef
klmn = 0,

and we can isolate the coefficients Ccdkl in a similar way as we did for the
coefficients Cai .

Rewriting the FCI equation, more to add
A standard choice for the first iteration is to set

Cabij = 〈ij|v̂|ab〉
εi + εj − εa − εb

.

At the end we can rewrite our solution of the Schroedinger equation in terms of
n coupled equations for the coefficients CPH . This is a very cumbersome way of
solving the equation. However, by using this iterative scheme we can illustrate
how we can compute the various terms in the wave operator or correlation
operator Ĉ. We will later identify the calculation of the various terms CPH
as parts of different many-body approximations to full CI. In particular, we
can relate this non-linear scheme with Coupled Cluster theory and many-body
perturbation theory.

Summarizing FCI and bringing in approximative methods
If we can diagonalize large matrices, FCI is the method of choice since:

• It gives all eigenvalues, ground state and excited states

• The eigenvectors are obtained directly from the coefficients CPH which
result from the diagonalization

• We can compute easily expectation values of other operators, as well as
transition probabilities

• Correlations are easy to understand in terms of contributions to a given
operator beyond the Hartree-Fock contribution. This is the standard
approach in many-body theory.

Definition of the correlation energy
The correlation energy is defined as, with a two-body Hamiltonian,

∆E =
∑
ai

〈i|f̂ |a〉Cai +
∑
abij

〈ij|v̂|ab〉Cabij .

10

The coefficients C result from the solution of the eigenvalue problem. The energy
of say the ground state is then

E = Eref + ∆E,

where the so-called reference energy is the energy we obtain from a Hartree-Fock
calculation, that is

Eref = 〈Φ0|Ĥ|Φ0〉.

FCI equation and the coefficients
However, as we have seen, even for a small case like the four first major shells

and a nucleus like oxygen-16, the dimensionality becomes quickly intractable. If
we wish to include single-particle states that reflect weakly bound systems, we
need a much larger single-particle basis. We need thus approximative methods
that sum specific correlations to infinite order.

Popular methods are

• Many-body perturbation theory (in essence a Taylor expansion)

• Coupled cluster theory (coupled non-linear equations)

• Green’s function approaches (matrix inversion)

• Similarity group transformation methods (coupled ordinary differential
equations)

All these methods start normally with a Hartree-Fock basis as the calculational
basis.

Important ingredients to have in codes

• Be able to validate and verify the algorithms.

• Include concepts like unit testing. Gives the possibility to test and validate
several or all parts of the code.

• Validation and verification are then included naturally and one can develop
a better attitude to what is meant with an ethically sound scientific
approach.

A structured approach to solving problems
In the steps that lead to the development of clean code you should think of

1. How to structure a code in terms of functions (use IDEs or advanced text
editors like sublime or atom)

11

http://www.sciencedirect.com/science/article/pii/0370157395000126
http://iopscience.iop.org/article/10.1088/0034-4885/77/9/096302/meta
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.106.222502
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.106.222502

2. How to make a module

3. How to read input data flexibly from the command line or files

4. How to create graphical/web user interfaces

5. How to write unit tests

6. How to refactor code in terms of classes (instead of functions only)

7. How to conduct and automate large-scale numerical experiments

8. How to write scientific reports in various formats (LATEX, HTML, doconce)

Additional benefits
Many of the above aspetcs will save you a lot of time when you incrementally

extend software over time from simpler to more complicated problems. In
particular, you will benefit from many good habits:

1. New code is added in a modular fashion to a library (modules)

2. Programs are run through convenient user interfaces

3. It takes one quick command to let all your code undergo heavy testing

4. Tedious manual work with running programs is automated,

5. Your scientific investigations are reproducible, scientific reports with top
quality typesetting are produced both for paper and electronic devices.
Use version control software like git and repositories like github

Unit Testing
Unit Testing is the practice of testing the smallest testable parts, called units,

of an application individually and independently to determine if they behave
exactly as expected.

Unit tests (short code fragments) are usually written such that they can be
preformed at any time during the development to continually verify the behavior
of the code.

In this way, possible bugs will be identified early in the development cycle,
making the debugging at later stages much easier.

12

https://git-scm.com/
https://github.com/

Unit Testing, benefits
There are many benefits associated with Unit Testing, such as

• It increases confidence in changing and maintaining code. Big changes can
be made to the code quickly, since the tests will ensure that everything
still is working properly.

• Since the code needs to be modular to make Unit Testing possible, the
code will be easier to reuse. This improves the code design.

• Debugging is easier, since when a test fails, only the latest changes need
to be debugged.

– Different parts of a project can be tested without the need to wait
for the other parts to be available.

• A unit test can serve as a documentation on the functionality of a unit of
the code.

Simple example of unit test
Look up the guide on how to install unit tests for c++ at course webpage.

This is the version with classes.
#include <unittest++/UnitTest++.h>

class MyMultiplyClass{
public:

double multiply(double x, double y) {
return x * y;

}
};

TEST(MyMath) {
MyMultiplyClass my;
CHECK_EQUAL(56, my.multiply(7,8));

}

int main()
{

return UnitTest::RunAllTests();
}

Simple example of unit test
And without classes

#include <unittest++/UnitTest++.h>

double multiply(double x, double y) {
return x * y;

}

13

TEST(MyMath) {
CHECK_EQUAL(56, multiply(7,8));

}

int main()
{

return UnitTest::RunAllTests();
}

For Fortran users, the link at http://sourceforge.net/projects/fortranxunit/
contains a similar software for unit testing. For Python go to https://docs.
python.org/2/library/unittest.html.

Unit tests
There are many types of unit test libraries. One which is very popular with

C++ programmers is Catch
Catch is header only. All you need to do is drop the file(s) somewhere

reachable from your project - either in some central location you can set your
header search path to find, or directly into your project tree itself!

This is a particularly good option for other Open-Source projects that want
to use Catch for their test suite.

Examples
Computing factorials

inline unsigned int Factorial(unsigned int number) {
return number > 1 ? Factorial(number-1)*number : 1;

}

Factorial Example
Simple test where we put everything in a single file

#define CATCH_CONFIG_MAIN // This tells Catch to provide a main()
#include "catch.hpp"
inline unsigned int Factorial(unsigned int number) {

return number > 1 ? Factorial(number-1)*number : 1;
}

TEST_CASE("Factorials are computed", "[factorial]") {
REQUIRE(Factorial(0) == 1);
REQUIRE(Factorial(1) == 1);
REQUIRE(Factorial(2) == 2);
REQUIRE(Factorial(3) == 6);
REQUIRE(Factorial(10) == 3628800);

}

This will compile to a complete executable which responds to command line
arguments. If you just run it with no arguments it will execute all test cases (in
this case there is just one), report any failures, report a summary of how many
tests passed and failed and return the number of failed tests.

14

http://sourceforge.net/projects/fortranxunit/
https://docs.python.org/2/library/unittest.html
https://docs.python.org/2/library/unittest.html
https://github.com/philsquared/Catch/blob/master/docs/tutorial.md
https://github.com/philsquared/Catch/blob/master/docs/tutorial.md

What did we do (1)?
All we did was

#define

one identifier and
#include

one header and we got everything - even an implementation of main() that will
respond to command line arguments. Once you have more than one file with
unit tests in you’ll just need to

#include "catch.hpp"

and go. Usually it’s a good idea to have a dedicated implementation file that
just has

#define CATCH_CONFIG_MAIN
#include "catch.hpp".

You can also provide your own implementation of main and drive Catch yourself.

What did we do (2)?
We introduce test cases with the

TEST_CASE

macro.
The test name must be unique. You can run sets of tests by specifying a

wildcarded test name or a tag expression. All we did was define one identifier
and include one header and we got everything.

We write our individual test assertions using the
REQUIRE

macro.

Unit test summary and testing approach
Three levels of tests

1. Microscopic level: testing small parts of code, use often unit test libraries

2. Mesoscopic level: testing the integration of various parts of your code

3. Macroscopic level: testing that the final result is ok

15

Coding Recommendations
Writing clean and clear code is an art and reflects your understanding of

1. derivation, verification, and implementation of algorithms

2. what can go wrong with algorithms

3. overview of important, known algorithms

4. how algorithms are used to solve mathematical problems

5. reproducible science and ethics

6. algorithmic thinking for gaining deeper insights about scientific problems

Computing is understanding and your understanding is reflected in your abilities
to write clear and clean code.

Summary and recommendations
Some simple hints and tips in order to write clean and clear code

1. Spell out the algorithm and have a top-down approach to the flow of data

2. Start with coding as close as possible to eventual mathematical expressions

3. Use meaningful names for variables

4. Split tasks in simple functions and modules/classes

5. Functions should return as few as possible variables

6. Use unit tests and make sure your codes are producing the correct results

7. Where possible use symbolic coding to autogenerate code and check results

8. Make a proper timing of your algorithms

9. Use version control and make your science reproducible

10. Use IDEs or smart editors with debugging and analysis tools.

11. Automatize your computations interfacing high-level and compiled lan-
guages like C++ and Fortran.

12.

16

Building a many-body basis
Here we will discuss how we can set up a single-particle basis which we can

use in the various parts of our projects, from the simple pairing model to infinite
nuclear matter. We will use here the simple pairing model to illustrate in
particular how to set up a single-particle basis. We will also use this do discuss
standard FCI approaches like:

1. Standard shell-model basis in one or two major shells

2. Full CI in a given basis and no truncations

3. CISD and CISDT approximations

4. No-core shell model and truncation in excitation energy

Building a many-body basis
An important step in an FCI code is to construct the many-body basis.
While the formalism is independent of the choice of basis, the effectiveness

of a calculation will certainly be basis dependent.
Furthermore there are common conventions useful to know.
First, the single-particle basis has angular momentum as a good quantum

number. You can imagine the single-particle wavefunctions being generated
by a one-body Hamiltonian, for example a harmonic oscillator. Modifications
include harmonic oscillator plus spin-orbit splitting, or self-consistent mean-field
potentials, or the Woods-Saxon potential which mocks up the self-consistent
mean-field. For nuclei, the harmonic oscillator, modified by spin-orbit splitting,
provides a useful language for describing single-particle states.

Building a many-body basis
Each single-particle state is labeled by the following quantum numbers:

• Orbital angular momentum l

• Intrinsic spin s = 1/2 for protons and neutrons

• Angular momentum j = l ± 1/2

• z-component jz (or m)

• Some labeling of the radial wavefunction, typically n the number of nodes
in the radial wavefunction, but in the case of harmonic oscillator one can
also use the principal quantum number N , where the harmonic oscillator
energy is (N + 3/2)~ω.

In this format one labels states by n(l)j , with (l) replaced by a letter: s for l = 0,
p for l = 1, d for l = 2, f for l = 3, and thenceforth alphabetical.

17

Building a many-body basis
In practice the single-particle space has to be severely truncated. This trunca-

tion is typically based upon the single-particle energies, which is the effective
energy from a mean-field potential.

Sometimes we freeze the core and only consider a valence space. For example,
one may assume a frozen 4He core, with two protons and two neutrons in the
0s1/2 shell, and then only allow active particles in the 0p1/2 and 0p3/2 orbits.

Another example is a frozen 16O core, with eight protons and eight neutrons
filling the 0s1/2, 0p1/2 and 0p3/2 orbits, with valence particles in the 0d5/2, 1s1/2
and 0d3/2 orbits.

Sometimes we refer to nuclei by the valence space where their last nucleons
go. So, for example, we call 12C a p-shell nucleus, while 26Al is an sd-shell
nucleus and 56Fe is a pf -shell nucleus.

Building a many-body basis
There are different kinds of truncations.

• For example, one can start with ‘filled’ orbits (almost always the lowest),
and then allow one, two, three... particles excited out of those filled orbits.
These are called 1p-1h, 2p-2h, 3p-3h excitations.

• Alternately, one can state a maximal orbit and allow all possible configura-
tions with particles occupying states up to that maximum. This is called
full configuration.

• Finally, for particular use in nuclear physics, there is the energy truncation,
also called the N~Ω or Nmax truncation.

Building a many-body basis
Here one works in a harmonic oscillator basis, with each major oscillator

shell assigned a principal quantum number N = 0, 1, 2, 3, The N~Ω or Nmax
truncation: Any configuration is given an noninteracting energy, which is the sum
of the single-particle harmonic oscillator energies. (Thus this ignores spin-orbit
splitting.)

Excited state are labeled relative to the lowest configuration by the number
of harmonic oscillator quanta.

This truncation is useful because if one includes all configuration up to some
Nmax, and has a translationally invariant interaction, then the intrinsic motion
and the center-of-mass motion factor. In other words, we can know exactly the
center-of-mass wavefunction.

In almost all cases, the many-body Hamiltonian is rotationally invariant.
This means it commutes with the operators Ĵ2, Ĵz and so eigenstates will have
good J,M . Furthermore, the eigenenergies do not depend upon the orientation
M .

18

Therefore we can choose to construct a many-body basis which has fixed M ;
this is called an M -scheme basis.

Alternately, one can construct a many-body basis which has fixed J , or a
J-scheme basis.

Building a many-body basis
The Hamiltonian matrix will have smaller dimensions (a factor of 10 or more)

in the J-scheme than in the M -scheme. On the other hand, as we’ll show in the
next slide, theM -scheme is very easy to construct with Slater determinants, while
the J-scheme basis states, and thus the matrix elements, are more complicated,
almost always being linear combinations of M -scheme states. J-scheme bases
are important and useful, but we’ll focus on the simpler M -scheme.

The quantum numberm is additive (because the underlying group is Abelian):
if a Slater determinant â†i â

†
j â
†
k . . . |0〉 is built from single-particle states all with

good m, then the total

M = mi +mj +mk + . . .

This is not true of J , because the angular momentum group SU(2) is not Abelian.

Building a many-body basis
The upshot is that

• It is easy to construct a Slater determinant with good total M ;

• It is trivial to calculate M for each Slater determinant;

• So it is easy to construct an M -scheme basis with fixed total M .

Note that the individualM -scheme basis states will not, in general, have good to-
tal J . Because the Hamiltonian is rotationally invariant, however, the eigenstates
will have good J . (The situation is muddied when one has states of different J
that are nonetheless degenerate.)

Building a many-body basis
Example: two j = 1/2 orbits

Index n l j mj

1 0 0 1/2 -1/2
2 0 0 1/2 1/2
3 1 0 1/2 -1/2
4 1 0 1/2 1/2

Note that the order is arbitrary.

19

Building a many-body basis

There are
(

4
2

)
= 6 two-particle states, which we list with the total M :

Occupied M
1,2 0
1,3 -1
1,4 0
2,3 0
2,4 1
3,4 0

There are 4 states with M = 0, and 1 each with M = ±1.

Building a many-body basis
As another example, consider using only single particle states from the 0d5/2

space. They have the following quantum numbers

Index n l j mj

1 0 2 5/2 -5/2
2 0 2 5/2 -3/2
3 0 2 5/2 -1/2
4 0 2 5/2 1/2
5 0 2 5/2 3/2
6 0 2 5/2 5/2

Building a many-body basis

There are
(

6
2

)
= 15 two-particle states, which we list with the total M :

Occupied M Occupied M Occupied M
1,2 -4 2,3 -2 3,5 1
1,3 -3 2,4 -1 3,6 2
1,4 -2 2,5 0 4,5 2
1,5 -1 2,6 1 4,6 3
1,6 0 3,4 0 5,6 4

There are 3 states with M = 0, 2 with M = 1, and so on.

Shell-model project
The first step is to construct the M -scheme basis of Slater determinants. Here

M -scheme means the total Jz of the many-body states is fixed.
The steps could be:

20

• Read in a user-supplied file of single-particle states (examples can be given)
or just code these internally;

• Ask for the total M of the system and the number of particles N ;

• Construct all the N -particle states with given M . You will validate the
code by comparing both the number of states and specific states.

Shell-model project
The format of a possible input file could be

Index n l 2j 2mj

1 1 0 1 -1
2 1 0 1 1
3 0 2 3 -3
4 0 2 3 -1
5 0 2 3 1
6 0 2 3 3
7 0 2 5 -5
8 0 2 5 -3
9 0 2 5 -1
10 0 2 5 1
11 0 2 5 3
12 0 2 5 5

This represents the 1s1/20d3/20d5/2 valence space, or just the sd-space. There
are twelve single-particle states, labeled by an overall index, and which have
associated quantum numbers the number of radial nodes, the orbital angular
momentum l, and the angular momentum j and third component jz. To keep
everything as integers, we could store 2× j and 2× jz.

Shell-model project
To read in the single-particle states you need to:

• Open the file

– Read the number of single-particle states (in the above example, 12);
allocate memory; all you need is a single array storing 2× jz for each
state, labeled by the index.

• Read in the quantum numbers and store 2 × jz (and anything else you
happen to want).

21

Shell-model project
The next step is to read in the number of particles N and the fixed total M

(or, actually, 2×M). For this project we assume only a single species of particles,
say neutrons, although this can be relaxed. Note: Although it is often a good
idea to try to write a more general code, given the short time alloted we would
suggest you keep your ambition in check, at least in the initial phases of the
project.

You should probably write an error trap to make sure N andM are congruent;
if N is even, then 2×M should be even, and if N is odd then 2×M should be
odd.

Shell-model project
The final step is to generate the set of N -particle Slater determinants with

fixed M . The Slater determinants will be stored in occupation representation.
Although in many codes this representation is done compactly in bit notation
with ones and zeros, but for greater transparency and simplicity we will list the
occupied single particle states.

Hence we can store the Slater determinant basis states as sd(i, j), that is
an array of dimension NSD, the number of Slater determinants, by N , the
number of occupied state. So if for the 7th Slater determinant the 2nd, 3rd,
and 9th single-particle states are occupied, then sd(7, 1) = 2, sd(7, 2) = 3, and
sd(7, 3) = 9.

Shell-model project
We can construct an occupation representation of Slater determinants by the

odometer method. Consider Nsp = 12 and N = 4. Start with the first 4 states
occupied, that is:

• sd(1, :) = 1, 2, 3, 4 (also written as |1, 2, 3, 4〉)

Now increase the last occupancy recursively:

• sd(2, :) = 1, 2, 3, 5

• sd(3, :) = 1, 2, 3, 6

• sd(4, :) = 1, 2, 3, 7

• . . .

• sd(9, :) = 1, 2, 3, 12

Then start over with

• sd(10, :) = 1, 2, 4, 5

and again increase the rightmost digit

22

• sd(11, :) = 1, 2, 4, 6

• sd(12, :) = 1, 2, 4, 7

• . . .

• sd(17, :) = 1, 2, 4, 12

Shell-model project
When we restrict ourselves to an M -scheme basis, we could choose two paths.

The first is simplest (and simplest is often best, at least in the first draft of
a code): generate all possible Slater determinants, and then extract from this
initial list a list of those Slater determinants with a given M . (You will need to
write a short function or routine that computes M for any given occupation.)

Alternately, and not too difficult, is to run the odometer routine twice: each
time, as as a Slater determinant is calculated, compute M , but do not store the
Slater determinants except the current one. You can then count up the number
of Slater determinants with a chosen M . Then allocated storage for the Slater
determinants, and run the odometer algorithm again, this time storing Slater
determinants with the desired M (this can be done with a simple logical flag).

Shell-model project
Some example solutions: Let’s begin with a simple case, the 0d5/2 space

containing six single-particle states

Index n l j mj

1 0 2 5/2 -5/2
2 0 2 5/2 -3/2
3 0 2 5/2 -1/2
4 0 2 5/2 1/2
5 0 2 5/2 3/2
6 0 2 5/2 5/2

For two particles, there are a total of 15 states, which we list here with the total
M :

• |1, 2〉, M = −4, |1, 3〉, M = −3

• |1, 4〉, M = −2, |1, 5〉, M = −1

• |1, 5〉, M = 0, vert2, 3〉, M = −2

• |2, 4〉, M = −1, |2, 5〉, M = 0

• |2, 6〉, M = 1, |3, 4〉, M = 0

• |3, 5〉, M = 1, |3, 6〉, M = 2

23

• |4, 5〉, M = 2, |4, 6〉, M = 3

• |5, 6〉, M = 4

Of these, there are only 3 states with M = 0.

Shell-model project
You should try by hand to show that in this same single-particle space, that

for N = 3 there are 3 states with M = 1/2 and for N = 4 there are also only 3
states with M = 0.

To test your code, confirm the above.
Also, for the sd-space given above, for N = 2 there are 14 states with M = 0,

for N = 3 there are 37 states with M = 1/2, for N = 4 there are 81 states with
M = 0.

Shell-model project
For our project, we will only consider the pairing model. A simple space is

the (1/2)2 space with four single-particle states

Index n l s ms

1 0 0 1/2 -1/2
2 0 0 1/2 1/2
3 1 0 1/2 -1/2
4 1 0 1/2 1/2

For N = 2 there are 4 states with M = 0; show this by hand and confirm your
code reproduces it.

Shell-model project
Another, slightly more challenging space is the (1/2)4 space, that is, with

eight single-particle states we have

Index n l s ms

1 0 0 1/2 -1/2
2 0 0 1/2 1/2
3 1 0 1/2 -1/2
4 1 0 1/2 1/2
5 2 0 1/2 -1/2
6 2 0 1/2 1/2
7 3 0 1/2 -1/2
8 3 0 1/2 1/2

For N = 2 there are 16 states with M = 0; for N = 3 there are 24 states with
M = 1/2, and for N = 4 there are 36 states with M = 0.

24

Shell-model project
In the shell-model context we can interpret this as 4 s1/2 levels, withm = ±1/2,

we can also think of these are simple four pairs, ±k, k = 1, 2, 3, 4. Later on we
will assign single-particle energies, depending on the radial quantum number n,
that is, εk = |k|δ so that they are equally spaced.

Shell-model project
For application in the pairing model we can go further and consider only

states with no “broken pairs,” that is, if +k is filled (or m = +1/2, so is −k
(m = −1/2). If you want, you can write your code to accept only these, and
obtain the following six states:

• |1, 2, 3, 4〉,

• |1, 2, 5, 6〉,

• |1, 2, 7, 8〉,

• |3, 4, 5, 6〉,

• |3, 4, 7, 8〉,

• |5, 6, 7, 8〉

Shell-model project
Hints for coding.

• Write small modules (routines/functions) ; avoid big functions that do
everything. (But not too small.)

• Use Unit tests! Write lots of error traps, even for things that are ‘obvious.’

• Document as you go along. The Unit tests serve as documentation. For
each function write a header that includes:

1. Main purpose of function and/or unit test
2. names and brief explanation of input variables, if any
3. names and brief explanation of output variables, if any
4. functions called by this function
5. called by which functions

25

Shell-model project
Hints for coding

• Unit tests will save time. Use also IDEs for debugging. If you insist on
brute force debugging, print out intermediate values. It’s almost impossible
to debug a code by looking at it–the code will almost always win a ‘staring
contest.’

• Validate code with SIMPLE CASES. Validate early and often. Unit tests!!

The number one mistake is using a too complex a system to test. For example ,
if you are computing particles in a potential in a box, try removing the potential–
you should get particles in a box. And start with one particle, then two, then
three... Don’t start with eight particles.

Shell-model project
Our recommended occupation representation, e.g. |1, 2, 4, 8〉, is easy to code,

but numerically inefficient when one has hundreds of millions of Slater determi-
nants.

In state-of-the-art shell-model codes, one generally uses bit representation,
i.e. |1101000100...〉 where one stores the Slater determinant as a single (or a
small number of) integer.

This is much more compact, but more intricate to code with considerable
more overhead. There exist bit-manipulation functions. We will discuss these in
more detail at the beginning of the third week.

Example case: pairing Hamiltonian
We consider a space with 2Ω single-particle states, with each state labeled by

k = 1, 2, 3,Ω and m = ±1/2. The convention is that the state with k > 0 has
m = +1/2 while −k has m = −1/2.

The Hamiltonian we consider is

Ĥ = −GP̂+P̂−,

where
P̂+ =

∑
k>0

â†kâ
†
−k.

and P̂− = (P̂+)†.
This problem can be solved using what is called the quasi-spin formalism to

obtain the exact results. Thereafter we will try again using the explicit Slater
determinant formalism.

26

Example case: pairing Hamiltonian
One can show (and this is part of the project) that[

P̂+, P̂−

]
=
∑
k>0

(
â†kâk + â†−kâ−k − 1

)
= N̂ − Ω.

Now define
P̂z = 1

2(N̂ − Ω).

Finally you can show [
P̂z, P̂±

]
= ±P̂±.

This means the operators P̂±, P̂z form a so-called SU(2) algebra, and we can
use all our insights about angular momentum, even though there is no actual
angular momentum involved.

So we rewrite the Hamiltonian to make this explicit:

Ĥ = −GP̂+P̂− = −G
(
P̂ 2 − P̂ 2

z + P̂z

)
Example case: pairing Hamiltonian

Because of the SU(2) algebra, we know that the eigenvalues of P̂ 2 must be of
the form p(p+ 1), with p either integer or half-integer, and the eigenvalues of P̂z
are mp with p ≥ |mp|, with mp also integer or half-integer.

But because P̂z = (1/2)(N̂ − Ω), we know that for N particles the value
mp = (N − Ω)/2. Furthermore, the values of mp range from −Ω/2 (for N = 0)
to +Ω/2 (for N = 2Ω, with all states filled).

We deduce the maximal p = Ω/2 and for a given n the values range of p
range from |N − Ω|/2 to Ω/2 in steps of 1 (for an even number of particles)

Following Racah we introduce the notation p = (Ω − v)/2 where v =
0, 2, 4, ...,Ω− |N − Ω| With this it is easy to deduce that the eigenvalues of the
pairing Hamiltonian are

−G(N − v)(2Ω + 2−N − v)/4

This also works for N odd, with v = 1, 3, 5,

Example case: pairing Hamiltonian
Let’s take a specific example: Ω = 3 so there are 6 single-particle states, and

N = 3, with v = 1, 3. Therefore there are two distinct eigenvalues,

E = −2G, 0

Now let’s work this out explicitly. The single particle degrees of freedom are
defined as

27

Index k m
1 1 -1/2
2 -1 1/2
3 2 -1/2
4 -2 1/2
5 3 -1/2
6 -3 1/2

There are
(

6
3

)
= 20 three-particle states, but there are 9 states with M =

+1/2, namely |1, 2, 3〉, |1, 2, 5〉, |1, 4, 6〉, |2, 3, 4〉, |2, 3, 6〉, |2, 4, 5〉, |2, 5, 6〉, |3, 4, 6〉, |4, 5, 6〉.

Example case: pairing Hamiltonian
In this basis, the operator

P̂+ = â†1â
†
2 + â†3â

†
4 + â†5â

†
6

From this we can determine that

P̂−|1, 4, 6〉 = P̂−|2, 3, 6〉 = P̂−|2, 4, 5〉 = 0

so those states all have eigenvalue 0.

Example case: pairing Hamiltonian
Now for further example,

P̂−|1, 2, 3〉 = |3〉

so
P̂+P̂−|1, 2, 3〉 = |1, 2, 3〉+ |3, 4, 3〉+ |5, 6, 3〉

The second term vanishes because state 3 is occupied twice, and reordering the
last term we get

P̂+P̂−|1, 2, 3〉 = |1, 2, 3〉+ |3, 5, 6〉

without picking up a phase.

Example case: pairing Hamiltonian
Continuing in this fashion, with the previous ordering of the many-body

states (|1, 2, 3〉, |1, 2, 5〉, |1, 4, 6〉, |2, 3, 4〉, |2, 3, 6〉, |2, 4, 5〉, |2, 5, 6〉, |3, 4, 6〉, |4, 5, 6〉)

28

the Hamiltonian matrix of this system is

H = −G

1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1

This is useful for our project. One can by hand confirm that there are 3
eigenvalues −2G and 6 with value zero.

Example case: pairing Hamiltonian
Another example Using the (1/2)4 single-particle space, resulting in eight

single-particle states

Index n l s ms

1 0 0 1/2 -1/2
2 0 0 1/2 1/2
3 1 0 1/2 -1/2
4 1 0 1/2 1/2
5 2 0 1/2 -1/2
6 2 0 1/2 1/2
7 3 0 1/2 -1/2
8 3 0 1/2 1/2

and then taking only 4-particle, M = 0 states that have no ‘broken pairs’, there
are six basis Slater determinants:

• |1, 2, 3, 4〉,

• |1, 2, 5, 6〉,

• |1, 2, 7, 8〉,

• |3, 4, 5, 6〉,

• |3, 4, 7, 8〉,

• |5, 6, 7, 8〉

29

Example case: pairing Hamiltonian
Now we take the following Hamiltonian

Ĥ =
∑
n

nδN̂n −GP̂ †P̂

where
N̂n = â†n,m=+1/2ân,m=+1/2 + â†n,m=−1/2ân,m=−1/2

and
P̂ † =

∑
n

â†n,m=+1/2â
†
n,m=−1/2

We can write down the 6× 6 Hamiltonian in the basis from the prior slide:

H =

2δ − 2G −G −G −G −G 0
−G 4δ − 2G −G −G −0 −G
−G −G 6δ − 2G 0 −G −G
−G −G 0 6δ − 2G −G −G
−G 0 −G −G 8δ − 2G −G
0 −G −G −G −G 10δ − 2G

(You should check by hand that this is correct.)

For δ = 0 we have the closed form solution of the g.s. energy given by −6G.

Building a Hamiltonian matrix
The goal is to compute the matrix elements of the Hamiltonian, specifically

matrix elements between many-body states (Slater determinants) of two-body
operators ∑

p<q,r<s

Vpqrâ
†
pâ
†
qâsâr

In particular we will need to compute

〈β|â†pâ†qâsâr|α〉

where α, β are indices labeling Slater determinants and p, q, r, s label single-
particle states.

Building a Hamiltonian matrix
Note: there are other, more efficient ways to do this than the method we

describe, but you will be able to produce a working code quickly.
As we coded in the first step, a Slater determinant |α〉 with index α is a list

of N occupied single-particle states i1 < i2 < i3 . . . iN .
Furthermore, for the two-body matrix elements Vpqrs we normally assume

p < q and r < s. For our specific project, the interaction is much simpler and
you can use this to simplify considerably the setup of a shell-model code for
project 2.

What follows here is a more general, but still brute force, approach.

30

Building a Hamiltonian matrix
Write a function that:

1. Has as input the single-particle indices p, q, r, s for the two-body operator
and the index α for the ket Slater determinant;

2. Returns the index β of the unique (if any) Slater determinant such that

|β〉 = ±â†pâ†qâsâr|α〉

as well as the phase
This is equivalent to computing

〈β|â†pâ†qâsâr|α〉

Building a Hamiltonian matrix, first step
The first step can take as input an initial Slater determinant (whose position

in the list of basis Slater determinants is α) written as an ordered listed of
occupied single-particle states, e.g. 1, 2, 5, 8, and the indices p, q, r, s from the
two-body operator.

It will return another final Slater determinant if the single-particle states r
and s are occupied, else it will return an empty Slater determinant (all zeroes).

If r and s are in the list of occupied single particle states, then replace the
initial single-particle states ij as i→ r and j → r.

Building a Hamiltonian matrix, second step
The second step will take the final Slater determinant from the first step (if not

empty), and then order by pairwise permutations (i.e., if the Slater determinant
is i1, i2, i3, . . ., then if in > in+1, interchange in ↔ in+1.

Building a Hamiltonian matrix
It will also output a phase. If any two single-particle occupancies are repeated,

the phase is 0. Otherwise it is +1 for an even permutation and -1 for an
odd permutation to bring the final Slater determinant into ascending order,
j1 < j2 < j3

Building a Hamiltonian matrix
Example: Suppose in the sd single-particle space that the initial Slater

determinant is 1, 3, 9, 12. If p, q, r, s = 2, 8, 1, 12, then after the first step the final
Slater determinant is 2, 3, 9, 8. The second step will return 2, 3, 8, 9 and a phase
of -1, because an odd number of interchanges is required.

31

Building a Hamiltonian matrix
Example: Suppose in the sd single-particle space that the initial Slater

determinant is 1, 3, 9, 12. If p, q, r, s = 3, 8, 1, 12, then after the first step the final
Slater determinant is 3, 3, 9, 8, but after the second step the phase is 0 because
the single-particle state 3 is occupied twice.

Lastly, the final step takes the ordered final Slater determinant and we search
through the basis list to determine its index in the many-body basis, that is, β.

Building a Hamiltonian matrix
The Hamiltonian is then stored as an NSD×NSD array of real numbers, which

can be allocated once you have created the many-body basis and know NSD.

Building a Hamiltonian matrix

1. Initialize H(α, β) = 0.0

2. Set up an outer loop over β

3. Loop over α = 1, NSD

4. For each α, loop over a = 1, ntbme and fetch V (a) and the single-particle
indices p, q, r, s

5. If V (a) = 0 skip. Otherwise, apply â†pâ†qâsâr to the Slater determinant
labeled by α.

6. Find, if any, the label β of the resulting Slater determinant and the phase
(which is 0, +1, -1).

7. If phase 6= 0, then update H(α, β) as H(α, β) + phase ∗ V (a). The sum is
important because multiple operators might contribute to the same matrix
element.

8. Continue loop over a

9. Continue loop over α.

10. End the outer loop over β.

You should force the resulting matrix H to be symmetric. To do this, when
updating H(α, β), if α 6= β, also update H(β, α).

Building a Hamiltonian matrix
You will also need to include the single-particle energies. This is easy: they

only contribute to diagonal matrix elements, that is, H(α, α). Simply find the
occupied single-particle states i and add the corresponding ε(i).

32

Hamiltonian matrix without the bit representation
Consider the many-body state Ψλ expressed as linear combinations of Slater

determinants (SD) of orthonormal single-particle states φ(r):

Ψλ =
∑
i

CλiSDi (2)

Using the Slater-Condon rules the matrix elements of any one-body (O1) or two-
body (O2) operator expressed in the determinant space have simple expressions
involving one- and two-fermion integrals in our given single-particle basis. The
diagonal elements are given by:

〈SD|O1|SD〉 =
∑
i∈SD

〈φi|O1|φi〉 (3)

〈SD|O2|SD〉 = 1
2

∑
(i,j)∈SD

〈φiφj |O2|φiφj〉 −

〈φiφj |O2|φjφi〉

Hamiltonian matrix without the bit representation, one
and two-body operators
For two determinants which differ only by the substitution of single-particle

states i with a single-particle state j:

〈SD|O1|SDj
i 〉 = 〈φi|O1|φj〉 (4)

〈SD|O2|SDj
i 〉 =

∑
k∈SD

〈φiφk|O2|φjφk〉 − 〈φiφk|O2|φkφj〉

For two determinants which differ by two single-particle states

〈SD|O1|SDjl
ik〉 = 0 (5)

〈SD|O2|SDjl
ik〉 = 〈φiφk|O2|φjφl〉 − 〈φiφk|O2|φlφj〉

All other matrix elements involving determinants with more than two substitu-
tions are zero.

Strategies for setting up an algorithm
An efficient implementation of these rules requires

• to find the number of single-particle state substitutions between two deter-
minants

• to find which single-particle states are involved in the substitution

• to compute the phase factor if a reordering of the single-particle states has
occured

33

We can solve this problem using our odometric approach or alternatively using a
bit representation as discussed below and in more detail in

• Scemama and Gimer’s article (Fortran codes)

• Simen Kvaal’s article on how to build an FCI code (C++ code)

We recommend in particular the article by Simen Kvaal. It contains nice general
classes for creation and annihilation operators as well as the calculation of the
phase (see below).

Computing expectation values and transitions in the shell-
model
When we diagonalize the Hamiltonian matrix, the eigenvectors are the co-

efficients Cλi used to express the many-body state Ψλ in terms of a linear
combinations of Slater determinants (SD) of orthonormal single-particle states
φ(r).

With these eigenvectors we can compute say the transition likelyhood of a
one-body operator as

〈Ψλ|O1|Ψσ〉 =
∑
ij

C∗λiCσj〈SDi|O1|SDj〉.

Writing the one-body operator in second quantization as

O1 =
∑
pq

〈p|o1|q〉a†paq,

we have
〈Ψλ|O1|Ψσ〉 =

∑
pq

〈p|o1|q〉
∑
ij

C∗λiCσj〈SDi|a†paq|SDj〉.

Computing expectation values and transitions in the shell-
model and spectroscopic factors
The terms we need to evalute then are just the elements

〈SDi|a†paq|SDj〉,

which can be rewritten in terms of spectroscopic factors by inserting a complete
set of Slater determinats as

〈SDi|a†paq|SDj〉 =
∑
l

〈SDi|a†p|SDl〉〈SDl|aq|SDj〉,

where 〈SDl|aq(a†p)|SDj〉 are the spectroscopic factors. These can be easily
evaluated in m-scheme. Using the Wigner-Eckart theorem we can transform
these to a J-coupled scheme through so-called reduced matrix elements.

34

https://github.com/scemama/slater_condon
https://arxiv.org/abs/0810.2644

Operators in second quantization
In the build-up of a shell-model or FCI code that is meant to tackle large

dimensionalities we need to deal with the action of the Hamiltonian Ĥ on a
Slater determinant represented in second quantization as

|α1 . . . αn〉 = a†α1
a†α2

. . . a†αn
|0〉.

The time consuming part stems from the action of the Hamiltonian on the above
determinant,∑

αβ

〈α|t+ u|β〉a†αaβ + 1
4
∑
αβγδ

〈αβ|v̂|γδ〉a†αa
†
βaδaγ

 a†α1
a†α2

. . . a†αn
|0〉.

A practically useful way to implement this action is to encode a Slater determinant
as a bit pattern.

Operators in second quantization
Assume that we have at our disposal n different single-particle states α0, α2, . . . , αn−1

and that we can distribute among these states N ≤ n particles.
A Slater determinant can then be coded as an integer of n bits. As an

example, if we have n = 16 single-particle states α0, α1, . . . , α15 and N = 4
fermions occupying the states α3, α6, α10 and α13 we could write this Slater
determinant as

ΦΛ = a†α3
a†α6

a†α10
a†α13
|0〉.

The unoccupied single-particle states have bit value 0 while the occupied ones
are represented by bit state 1. In the binary notation we would write this 16
bits long integer as

α0 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 α15
0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0

which translates into the decimal number

23 + 26 + 210 + 213 = 9288.

We can thus encode a Slater determinant as a bit pattern.

Operators in second quantization
With N particles that can be distributed over n single-particle states, the

total number of Slater determinats (and defining thereby the dimensionality of
the system) is

dim(H) =
(

n
N

)
.

The total number of bit patterns is 2n.

35

Operators in second quantization
We assume again that we have at our disposal n different single-particle orbits

α0, α2, . . . , αn−1 and that we can distribute among these orbits N ≤ n particles.
The ordering among these states is important as it defines the order of the
creation operators. We will write the determinant

ΦΛ = a†α3
a†α6

a†α10
a†α13
|0〉,

in a more compact way as

Φ3,6,10,13 = |0001001000100100〉.

The action of a creation operator is thus

a†α4
Φ3,6,10,13 = a†α4

|0001001000100100〉 = a†α4
a†α3

a†α6
a†α10

a†α13
|0〉,

which becomes

−a†α3
a†α4

a†α6
a†α10

a†α13
|0〉 = −|0001101000100100〉.

Operators in second quantization
Similarly

a†α6
Φ3,6,10,13 = a†α6

|0001001000100100〉 = a†α6
a†α3

a†α6
a†α10

a†α13
|0〉,

which becomes
−a†α4

(a†α6
)2a†α10

a†α13
|0〉 = 0!

This gives a simple recipe:
• If one of the bits bj is 1 and we act with a creation operator on this bit,
we return a null vector

• If bj = 0, we set it to 1 and return a sign factor (−1)l, where l is the
number of bits set before bit j.

Operators in second quantization
Consider the action of a†α2

on various slater determinants:

a†α2
Φ00111 = a†α2

|00111〉 = 0× |00111〉
a†α2

Φ01011 = a†α2
|01011〉 = (−1)× |01111〉

a†α2
Φ01101 = a†α2

|01101〉 = 0× |01101〉
a†α2

Φ01110 = a†α2
|01110〉 = 0× |01110〉

a†α2
Φ10011 = a†α2

|10011〉 = (−1)× |10111〉
a†α2

Φ10101 = a†α2
|10101〉 = 0× |10101〉

a†α2
Φ10110 = a†α2

|10110〉 = 0× |10110〉
a†α2

Φ11001 = a†α2
|11001〉 = (+1)× |11101〉

a†α2
Φ11010 = a†α2

|11010〉 = (+1)× |11110〉
What is the simplest way to obtain the phase when we act with one annihila-
tion(creation) operator on the given Slater determinant representation?

36

Operators in second quantization
We have an SD representation

ΦΛ = a†α0
a†α3

a†α6
a†α10

a†α13
|0〉,

in a more compact way as

Φ0,3,6,10,13 = |1001001000100100〉.

The action of

a†α4
aα0Φ0,3,6,10,13 = a†α4

|0001001000100100〉 = a†α4
a†α3

a†α6
a†α10

a†α13
|0〉,

which becomes

−a†α3
a†α4

a†α6
a†α10

a†α13
|0〉 = −|0001101000100100〉.

Operators in second quantization
The action

aα0Φ0,3,6,10,13 = |0001001000100100〉,
can be obtained by subtracting the logical sum (AND operation) of Φ0,3,6,10,13
and a word which represents only α0, that is

|1000000000000000〉,

from Φ0,3,6,10,13 = |1001001000100100〉.
This operation gives |0001001000100100〉.
Similarly, we can form a†α4

aα0Φ0,3,6,10,13, say, by adding |0000100000000000〉
to aα0Φ0,3,6,10,13, first checking that their logical sum is zero in order to make
sure that the state α4 is not already occupied.

Operators in second quantization
It is trickier however to get the phase (−1)l. One possibility is as follows
• Let S1 be a word that represents the 1-bit to be removed and all others

set to zero.
In the previous example S1 = |1000000000000000〉
• Define S2 as the similar word that represents the bit to be added, that is
in our case

S2 = |0000100000000000〉.
• Compute then S = S1 − S2, which here becomes

S = |0111000000000000〉
• Perform then the logical AND operation of S with the word containing

Φ0,3,6,10,13 = |1001001000100100〉,
which results in |0001000000000000〉. Counting the number of 1-bits gives the
phase. Here you need however an algorithm for bitcounting.

37

Bit counting
We include here a python program which may aid in this direction. It uses bit

manipulation functions from http://wiki.python.org/moin/BitManipulation.

import math

"""
A simple Python class for Slater determinant manipulation
Bit-manipulation stolen from:

http://wiki.python.org/moin/BitManipulation
"""

bitCount() counts the number of bits set (not an optimal function)

def bitCount(int_type):
""" Count bits set in integer """
count = 0
while(int_type):

int_type &= int_type - 1
count += 1

return(count)

testBit() returns a nonzero result, 2**offset, if the bit at ’offset’ is one.

def testBit(int_type, offset):
mask = 1 << offset
return(int_type & mask) >> offset

setBit() returns an integer with the bit at ’offset’ set to 1.

def setBit(int_type, offset):
mask = 1 << offset
return(int_type | mask)

clearBit() returns an integer with the bit at ’offset’ cleared.

def clearBit(int_type, offset):
mask = ~(1 << offset)
return(int_type & mask)

toggleBit() returns an integer with the bit at ’offset’ inverted, 0 -> 1 and 1 -> 0.

def toggleBit(int_type, offset):
mask = 1 << offset
return(int_type ^ mask)

binary string made from number

def bin0(s):
return str(s) if s<=1 else bin0(s>>1) + str(s&1)

def bin(s, L = 0):
ss = bin0(s)
if L > 0:

return ’0’*(L-len(ss)) + ss
else:

38

http://wiki.python.org/moin/BitManipulation

return ss

class Slater:
""" Class for Slater determinants """
def __init__(self):

self.word = int(0)

def create(self, j):
print "c^+_" + str(j) + " |" + bin(self.word) + "> = ",
Assume bit j is set, then we return zero.
s = 0
Check if bit j is set.
isset = testBit(self.word, j)
if isset == 0:

bits = bitCount(self.word & ((1<<j)-1))
s = pow(-1, bits)
self.word = setBit(self.word, j)

print str(s) + " x |" + bin(self.word) + ">"
return s

def annihilate(self, j):
print "c_" + str(j) + " |" + bin(self.word) + "> = ",
Assume bit j is not set, then we return zero.
s = 0
Check if bit j is set.
isset = testBit(self.word, j)
if isset == 1:

bits = bitCount(self.word & ((1<<j)-1))
s = pow(-1, bits)
self.word = clearBit(self.word, j)

print str(s) + " x |" + bin(self.word) + ">"
return s

Do some testing:

phi = Slater()
phi.create(0)
phi.create(1)
phi.create(2)
phi.create(3)

print

s = phi.annihilate(2)
s = phi.create(7)
s = phi.annihilate(0)
s = phi.create(200)

39

Eigenvalue problems, basic definitions
Let us consider the matrix A of dimension n. The eigenvalues of A are defined

through the matrix equation

Ax(ν) = λ(ν)x(ν),

where λ(ν) are the eigenvalues and x(ν) the corresponding eigenvectors. Unless
otherwise stated, when we use the wording eigenvector we mean the right
eigenvector. The left eigenvalue problem is defined as

x(ν)
L A = λ(ν)x(ν)

L

The above right eigenvector problem is equivalent to a set of n equations with n
unknowns xi.

Eigenvalue problems, basic definitions
The eigenvalue problem can be rewritten as(

A− λ(ν)I
)

x(ν) = 0,

with I being the unity matrix. This equation provides a solution to the problem
if and only if the determinant is zero, namely∣∣∣A− λ(ν)I

∣∣∣ = 0,

which in turn means that the determinant is a polynomial of degree n in λ and
in general we will have n distinct zeros.

Eigenvalue problems, basic definitions
The eigenvalues of a matrix A ∈ Cn×n are thus the n roots of its characteristic

polynomial
P (λ) = det(λI−A),

or

P (λ) =
n∏
i=1

(λi − λ) .

The set of these roots is called the spectrum and is denoted as λ(A). If
λ(A) = {λ1, λ2, . . . , λn} then we have

det(A) = λ1λ2 . . . λn,

and if we define the trace of A as

Tr(A) =
n∑
i=1

aii

then
Tr(A) = λ1 + λ2 + · · ·+ λn.

40

Abel-Ruffini Impossibility Theorem
The Abel-Ruffini theorem (also known as Abel’s impossibility theorem) states

that there is no general solution in radicals to polynomial equations of degree
five or higher.

The content of this theorem is frequently misunderstood. It does not assert
that higher-degree polynomial equations are unsolvable. In fact, if the polynomial
has real or complex coefficients, and we allow complex solutions, then every
polynomial equation has solutions; this is the fundamental theorem of algebra.
Although these solutions cannot always be computed exactly with radicals, they
can be computed to any desired degree of accuracy using numerical methods
such as the Newton-Raphson method or Laguerre method, and in this way they
are no different from solutions to polynomial equations of the second, third, or
fourth degrees.

The theorem only concerns the form that such a solution must take. The
content of the theorem is that the solution of a higher-degree equation cannot in
all cases be expressed in terms of the polynomial coefficients with a finite number
of operations of addition, subtraction, multiplication, division and root extraction.
Some polynomials of arbitrary degree, of which the simplest nontrivial example
is the monomial equation axn = b, are always solvable with a radical.

Abel-Ruffini Impossibility Theorem
The Abel-Ruffini theorem says that there are some fifth-degree equations

whose solution cannot be so expressed. The equation x5 − x + 1 = 0 is an
example. Some other fifth degree equations can be solved by radicals, for
example x5 − x4 − x+ 1 = 0. The precise criterion that distinguishes between
those equations that can be solved by radicals and those that cannot was given
by Galois and is now part of Galois theory: a polynomial equation can be solved
by radicals if and only if its Galois group is a solvable group.

Today, in the modern algebraic context, we say that second, third and
fourth degree polynomial equations can always be solved by radicals because the
symmetric groups S2, S3 and S4 are solvable groups, whereas Sn is not solvable
for n ≥ 5.

Eigenvalue problems, basic definitions
In the present discussion we assume that our matrix is real and symmetric,

that is A ∈ Rn×n. The matrix A has n eigenvalues λ1 . . . λn (distinct or not).
Let D be the diagonal matrix with the eigenvalues on the diagonal

D =

λ1 0 0 0 . . . 0 0
0 λ2 0 0 . . . 0 0
0 0 λ3 0 0 . . . 0
. .
0 λn−1
0 0 λn

 .

41

If A is real and symmetric then there exists a real orthogonal matrix S such that

STAS = diag(λ1, λ2, . . . , λn),

and for j = 1 : n we have AS(:, j) = λjS(:, j).

Eigenvalue problems, basic definitions
To obtain the eigenvalues of A ∈ Rn×n, the strategy is to perform a series of

similarity transformations on the original matrix A, in order to reduce it either
into a diagonal form as above or into a tridiagonal form.

We say that a matrix B is a similarity transform of A if

B = STAS, where STS = S−1S = I.

The importance of a similarity transformation lies in the fact that the resulting
matrix has the same eigenvalues, but the eigenvectors are in general different.

Eigenvalue problems, basic definitions
To prove this we start with the eigenvalue problem and a similarity transformed

matrix B.
Ax = λx and B = STAS.

We multiply the first equation on the left by ST and insert STS = I between A
and x. Then we get

(STAS)(STx) = λSTx, (6)
which is the same as

B
(
STx

)
= λ

(
STx

)
.

The variable λ is an eigenvalue of B as well, but with eigenvector STx.

Eigenvalue problems, basic definitions
The basic philosophy is to
• Either apply subsequent similarity transformations (direct method) so that

STN . . .ST1 AS1 . . .SN = D, (7)
• Or apply subsequent similarity transformations so that A becomes tridi-
agonal (Householder) or upper/lower triangular (the QR method to be
discussed later).

• Thereafter, techniques for obtaining eigenvalues from tridiagonal matrices
can be used.

• Or use so-called power methods

• Or use iterative methods (Krylov, Lanczos, Arnoldi). These methods are
popular for huge matrix problems.

42

Discussion of methods for eigenvalues
The general overview. One speaks normally of two main approaches to
solving the eigenvalue problem.

• The first is the formal method, involving determinants and the characteris-
tic polynomial. This proves how many eigenvalues there are, and is the
way most of you learned about how to solve the eigenvalue problem, but
for matrices of dimensions greater than 2 or 3, it is rather impractical.

• The other general approach is to use similarity or unitary tranformations
to reduce a matrix to diagonal form. This is normally done in two steps:
first reduce to for example a tridiagonal form, and then to diagonal form.
The main algorithms we will discuss in detail, Jacobi’s and Householder’s
(so-called direct method) and Lanczos algorithms (an iterative method),
follow this methodology.

Eigenvalues methods
Direct or non-iterative methods require for matrices of dimensionality n× n

typically O(n3) operations. These methods are normally called standard methods
and are used for dimensionalities n ∼ 105 or smaller. A brief historical overview

Year n
1950 n = 20 (Wilkinson)
1965 n = 200 (Forsythe et al.)
1980 n = 2000 Linpack
1995 n = 20000 Lapack

This decade n ∼ 105 Lapack

shows that in the course of 60 years the dimension that direct diagonalization
methods can handle has increased by almost a factor of 104 (note this is for
serial versions). However, it pales beside the progress achieved by computer
hardware, from flops to petaflops, a factor of almost 1015. We see clearly played
out in history the O(n3) bottleneck of direct matrix algorithms.

Sloppily speaking, when n ∼ 104 is cubed we have O(1012) operations, which
is smaller than the 1015 increase in flops.

Discussion of methods for eigenvalues
If the matrix to diagonalize is large and sparse, direct methods simply become

impractical, also because many of the direct methods tend to destroy sparsity.
As a result large dense matrices may arise during the diagonalization procedure.
The idea behind iterative methods is to project the n−dimensional problem in
smaller spaces, so-called Krylov subspaces. Given a matrix A and a vector v,
the associated Krylov sequences of vectors (and thereby subspaces) v, Av, A2v,
A3v, . . . , represent successively larger Krylov subspaces.

43

Matrix Ax = b Ax = λx
A = A∗ Conjugate gradient Lanczos
A 6= A∗ GMRES etc Arnoldi

Eigenvalues and Lanczos’ method
Basic features with a real symmetric matrix (and normally huge n > 106 and

sparse) Â of dimension n× n:

• Lanczos’ algorithm generates a sequence of real tridiagonal matrices Tk of
dimension k×k with k ≤ n, with the property that the extremal eigenvalues
of Tk are progressively better estimates of Â’ extremal eigenvalues.* The
method converges to the extremal eigenvalues.

• The similarity transformation is

T̂ = Q̂T ÂQ̂,

with the first vector Q̂ê1 = q̂1.
We are going to solve iteratively

T̂ = Q̂T ÂQ̂,

with the first vector Q̂ê1 = q̂1. We can write out the matrix Q̂ in terms of its
column vectors

Q̂ = [q̂1q̂2 . . . q̂n] .

Eigenvalues and Lanczos’ method, tridiagonal matrix
The matrix

T̂ = Q̂T ÂQ̂,

can be written as

T̂ =

α1 β1 0 0
β1 α2 β2 0 . . . 0
0 β2 α3 β3 . . . 0
. 0
. . . βn−2 αn−1 βn−1
0 0 βn−1 αn

Eigenvalues and Lanczos’ method, tridiagonal and orthog-
onal matrices
Using the fact that

Q̂Q̂T = Î ,

we can rewrite
T̂ = Q̂T ÂQ̂,

as
Q̂T̂ = ÂQ̂.

44

Eigenvalues and Lanczos’ method
If we equate columns

T̂ =

α1 β1 0 0
β1 α2 β2 0 . . . 0
0 β2 α3 β3 . . . 0
. 0
. . . βn−2 αn−1 βn−1
0 0 βn−1 αn

we obtain

Âq̂k = βk−1q̂k−1 + αkq̂k + βkq̂k+1.

Eigenvalues and Lanczos’ method, defining the Lanczos’
vectors

We have thus
Âq̂k = βk−1q̂k−1 + αkq̂k + βkq̂k+1,

with β0q̂0 = 0 for k = 1 : n− 1. Remember that the vectors q̂k are orthornormal
and this implies

αk = q̂Tk Âq̂k,

and these vectors are called Lanczos vectors.

Eigenvalues and Lanczos’ method, basic steps
We have thus

Âq̂k = βk−1q̂k−1 + αkq̂k + βkq̂k+1,

with β0q̂0 = 0 for k = 1 : n− 1 and

αk = q̂Tk Âq̂k.

If
r̂k = (Â− αk Î)q̂k − βk−1q̂k−1,

is non-zero, then
q̂k+1 = r̂k/βk,

with βk = ±||r̂k||2.

45

