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Introduction
An essential element of the Talent courses is to develop a large project(s) which
allows you to study and understand theoretical concepts in nuclear physics.
These concepts will in turn allow you to interpret results from experiments and
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understand the pertinent physics in terms of the underlying forces and laws of
motion.

Together with the regular lectures in the morning, the hope is that during
these three weeks you will be able to write and run a program which implements
at least one of the methods discussed during the lectures. The lectures will also
cover additional material which aims at giving you a broader view on what can
be achieved with the methods to be discussed. Combined with the ’hands-on’
afternoon sessions, the hope is that the lectures and the computational projects
will together allow you to achieve these goals.

The project is divided in four main parts. The first part deals with a simple
pairing model and the development of a shell-model program related to this
model. This program can then serve as a benchmark program for the Coupled
Cluster theory and in-medium SRG codes to be developed. The latter form the
remaining parts of the project.

If you have not used version control before now, it is time to do so. Proper
version control is central to a good ethical scientific conduct. We do require that
you use some kind of version control software when working on the projects. We
recommend strongly github. All lectures and additional material are available at
the github address of the course.

Furthermore, before coming to the course, we recommend that you refresh
your knowledge on second quantization.

Some basic ingredients for a successful numerical project
When building up a numerical project there are several elements you should
think of, amongst these we take the liberty of mentioning the following:

1. How to structure a code in terms of functions

2. How to make a module

3. How to read input data flexibly from the command line

4. How to create graphical/web user interfaces

5. How to write unit tests (test functions)

6. How to refactor code in terms of classes (instead of functions only), in our
case you think of a system and a solver class

7. How to conduct and automate large-scale numerical experiments

8. How to write scientific reports in various formats (LATEX, HTML)

The conventions and techniques outlined here will save you a lot of time when
you incrementally extend software over time from simpler to more complicated
problems. In particular, you will benefit from many good habits:

1. New code is added in a modular fashion to a library (modules)
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2. Programs are run through convenient user interfaces

3. It takes one quick command to let all your code undergo heavy testing

4. Tedious manual work with running programs is automated,

5. Your scientific investigations are reproducible, scientific reports with top
quality typesetting are produced both for paper and electronic devices.

We expect you to form working groups consisting of typically three (or more)
participants. Every group should establish its own Github or Gitlab repository
for the project.

Part 1, pairing problem
In the first part of the project we will thus work with a simplified Hamiltonian
consisting of a one-body operator and a so-called pairing interaction term. It is
a model which to a large extent mimicks some central features of atomic nuclei,
certain atoms and systems which exhibit superfluiditity or superconductivity.
Pairing plays a central role in nuclear physics, in particular, for identical particles
it makes up large fractions of the correlations among particles. The partial
wave 1S0 of the nucleon-nucleon force plays a central role in setting up pairing
correlations in nuclei. Without this particular partial wave, the J = 0 ground
state spin assignment for many nuclei with even numbers of particles would not
be possible.

We define first the Hamiltonian, with a definition of the model space and the
single-particle basis. Thereafter, we present the various steps which are needed
to develop a shell-model program for studying the pairing problem.

The Hamiltonian acting in the complete Hilbert space (usually infinite di-
mensional) consists of an unperturbed one-body part, Ĥ0, and a perturbation
ĤI .

We limit ourselves to at most two-body interactions, our Hamiltonian is then
represented by the following operators

Ĥ = Ĥ0 + ĤI =
∑
pq

〈p|h0|q〉a†paq + 1
4

∑
pqrs

〈pq|V |rs〉a†pa†qasar, (1)

where a†p and aq etc are standard fermion creation and annihilation operators, re-
spectively, and pqrs represent all possible single-particle quantum numbers. The
full single-particle space is defined by the completeness relation 1̂ =

∑∞
p=1 |p〉〈p|.

In our calculations we will let the single-particle states |p〉 be eigenfunctions of
the one-particle operator ĥ0.

The above Hamiltonian acts in turn on various many-body Slater deter-
minants constructed from the single-basis defined by the one-body operator
ĥ0.

Our specific model consists of only 2 doubly-degenerate and equally spaced
single-particle levels labeled by p = 1, 2, . . . and spin σ = ±1. In Eq. (1) the
labels pqrs could also include spin σ. From now and for the rest of this project,
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labels like pqrs represent the states without spin. The spin quantum numbers
need to be accounted for explicitely.

We write the Hamiltonian as

Ĥ = Ĥ0 + ĤI = Ĥ0 + V̂ ,

where

Ĥ0 = ξ
∑
pσ

(p− 1)a†pσapσ.

Here, H0 is the unperturbed Hamiltonian with a spacing between successive
single-particle states given by ξ, which we will set to a constant value ξ = 1
without loss of generality.

The two-body operator V̂ has one term only. It represents the pairing
contribution and carries a constant strength g and is given by

〈q + q − |V |s+ s−〉 = −g
where g is a constant. The above labeling means that for a general matrix
elements 〈pq|V |rs〉 we require that the states p and q (and r and s) have the
same number quantum number q but opposite spins. The two spins values are
σ = ±1. When setting up the Hamiltonian matrix you need to figure out how to
make the two-body interaction antisymmetric. The variables σ = ± represent
the two possible spin values. The interaction can only couple pairs and excites
therefore only two particles at the time.

In our model we have kept both the interaction strength and the single-
particle level as constants. In a realistic system like the atomic nucleus this is
not the case.

The unperturbed Hamiltonian Ĥ0 and V̂ commute with the spin projection
Ŝz and the total spin Ŝ2. This is an important feature of our system that allows
us to block-diagonalize the full Hamiltonian. In this project we will focus only
on total spin S = 0, this case is normally called the no-broken pair case.

Part 1a: Paper and pencil gym while we wait for the more serious
stuff. Show that the unperturbed Hamiltonian Ĥ0 and V̂ commute with both
the spin projection Ŝz and the total spin Ŝ2, given by

Ŝz := 1
2

∑
pσ

σa†pσapσ

and

Ŝ2 := Ŝ2
z + 1

2(Ŝ+Ŝ− + Ŝ−Ŝ+),

where

Ŝ± :=
∑
p

a†p±ap∓.
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This is an important feature of our system that allows us to block-diagonalize
the full Hamiltonian. We will focus on total spin S = 0. In this case, it is
convenient to define the so-called pair creation and pair annihilation operators

P̂+
p = a†p+a

†
p−,

and

P̂−p = ap−ap+,

respectively.
The Hamiltonian (with ξ = 1) we will use can be written as

Ĥ =
∑
pσ

(p− 1)a†pσapσ − g
∑
pq

P̂+
p P̂
−
q .

Show that Hamiltonian commutes with the product of the pair creation and
annihilation operators. This model corresponds to a system with no broken pairs.
This means that the Hamiltonian can only link two-particle states in so-called
spin-reversed states.

Part 1b: Simpler case. Assume now that the effective Hilbert space consists
only of the two lowest single-particle states and that we have two particles only.
Set up the possible two-particle configurations when we have only two single-
particle states, that is p = 1 and p = 2. Construct thereafter the Hamiltonian
matrix using second quantization and for example Wick’s theorem for a system
with no broken pairs and spin S = 0 (with projection Sz = 0) for the case of the
two lowest single-particle levels and two particles only. This gives you a 2× 2
matrix to be diagonalized.

Find the eigenvalues by diagonalizing the Hamiltonian matrix. Vary your
results for selected values of g ∈ [−1, 1] and comment your results.

Part 1c: Setting up the Hamiltonian matrix. Construct thereafter the
Hamiltonian matrix for a system with no broken pairs and spin S = 0 for the case
of the four lowest single-particle levels. Our system consists of four particles only.
Our single-particle space consists of only the four lowest levels p = 1, 2, 3, 4. You
need to set up all possible Slater determinants and the Hamiltonian matrix using
second quantization and find all eigenvalues by diagonalizing the Hamiltonian
matrix. Vary your results for values of g ∈ [−1, 1]. Your Hamiltonian matrix is
a 6× 6 matrix. These results will serve as a benchmark for the construction of
our shell-model program and the CC and IMSRG programs. We refer to this as
the exact results. Comment the behavior of the ground state as function of g.
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To help, your final Hamiltonian matrix reads

H =


2δ − 2g −g −g −g −g 0
−g 4δ − 2g −g −g −0 −g
−g −g 6δ − 2g 0 −g −g
−g −g 0 6δ − 2g −g −g
−g 0 −g −g 8δ − 2g −g
0 −g −g −g −g 10δ − 2g


Part 1d: Diagonalizing the Hamiltonian matrix. Our next step is to
develop a code which sets up the above Hamiltonian matrices for two and four
particles in 2 and 4 single-particles states (the same as what you did in exercises
b) and c) and obtain the eigenvalues. To achieve this you should

• Decide whether you want to read from file the single-particle data and the
matrix elements in m-scheme, or set them up internally in your code. The
latter is the simplest possibility for the pairing model, whereas the first
option gives you a more general code which can be extended to the more
realistic cases discussed in the second part.

• Based on the single-particle basis, write a function which sets up all
possible Slater determinants which have total M = 0. Test that this
function reproduces the cases in b) and c). If you make this function more
general, it can then be reused for say a shell-model calculation of sd-shell
nuclei in the second part.

• Use the Slater determinant basis from the previous step to set up the
Hamiltonian matrix.

• With the Hamiltonian matrix, you can finally diagonalize the matrix and
obtain the final eigenvalues and test against the results of b) and c).

Codes to diagonalize in C++ or Fortran can be provided. For Python, numpy
contains eigenvalue solvers based on for example Householder’s and Givens’
algorithms. These are topics which can we discuss separately. The lecture slides
contain a rather detailed recipe on how to construct a Slater determinant basis
and how to set up the Hamiltonian matrix to diagonalize.

Part 1e: Further benchmarks and optional part. In developing the code
it also useful to test against cases which have closed-form solutions. One obvious
case is that of removing the two-body interaction. Then we have only the
single-particle energies. For the case of degenerate single-particle orbits, that
is one value of total single-particle angular momentum only j, with degeneracy
Ω = 2j + 1, one can show that the ground state energy E0 is with n particles

E0 = −g4n (Ω− n+ 2) .
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Challenge: Enlarge now your system to six and eight fermions and to p = 6
and p = 8 single-particle states, respectively. Run your program for a degenerate
single-particle state with degeneracy Ω and test against the exact result for the
ground state. Introduce thereafter a finite single-particle spacing and study the
results as you vary g, as done in b) and c). Comment your results.

Part 2: Coupled cluster calculations with doubles excita-
tions only for the pairing model
This project serves as a continuation of the pairing model with the aim being
to solve the same problem but now by developing a program that implements
the coupled cluster method with double excitations only. In doing so you will
find it convenient to write classes which define the single-particle basis and the
Hamiltonian. Your functions that solve the coupled cluster equations will then
just need to set up variables which point to interaction elements and single-
particle states with their pertinent quantum numbers. Use for example the setup
discussed in the FCI lectures for the pairing model.

1. Explain why no single excitations are involved in this model.

2. Set up the coupled cluster equations for doubles excitations and convince
yourself about their meaning and correctness.

3. Write a class which holds single-particle data like specific quantum numbers,
single-particle Hamiltonian etc. Write also a class which sets up and stores
two-body matrix elements defined by the single-particle states. Write
thereafter functions/classes which implement the coupled cluster method
with doubles only.

4. Compare your results with tose from the exact diagonalization with and
without the 4p4h excitation. Compare also your results to perturbation
theory at different orders, in particular to second order. Discuss your
results.

Part 3: Coupled cluster calculations with doubles excita-
tions only for infinite nuclear matter
This project forms one possible final path for the remaining two weeks. It can
also be extended in order to define the final project. You should be able to use
the program you developed in connection with the solution of the pairing model.

1. Explain why we don’t have single excitations in infinite matter.

2. Set up the relavent quantum numbers for a cartesian basis with plane
waves in three dimensions. Make the according changes to the code you
developed in connection with the pairing model. Implement periodic
boundary conditions.
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3. Replace the two-body interaction from the pairing model with the Min-
nesota potential model discussed during the lectures.

4. Use the program you developed in connection with the pairing model
to perform coupled cluster calculations in infinite matter with doubles
excitations. Perform coupled cluster calculations for infinite neutron matter
with the Minnesota interaction for N = 14 neutrons. Limit yourself to
two-particle and two-hole intermediate excitations only.

Part 4: IMSRG code for the pairing model and infinite
matter
Our final step consists in modifying the above program in order to include the
IMSRG method, applying it to both the pairing model and infinite neutron
matter. Compare your results with those obtained with Coupled Cluster theory
and comment your results obtained with the pairing model as well as those for
infinite neutron matter.
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