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Definitions and notations

Before we proceed we need some definitions. We will assume that the interacting
part of the Hamiltonian can be approximated by a two-body interaction. This
means that our Hamiltonian is written as the sum of some onebody part and a
twobody part
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with

A
Hy =Y ho(zy). (2)

The onebody part ueyxt(z;) is normally approximated by a harmonic oscillator
potential or the Coulomb interaction an electron feels from the nucleus. However,
other potentials are fully possible, such as one derived from the self-consistent
solution of the Hartree-Fock equations to be discussed here.

Our Hamiltonian is invariant under the permutation (interchange) of two
particles. Since we deal with fermions however, the total wave function is
antisymmetric. Let P be an operator which interchanges two particles. Due to
the symmetries we have ascribed to our Hamiltonian, this operator commutes
with the total Hamiltonian,

[ﬁv p] =0,

meaning that Uy (z1,za,...,24) is an eigenfunction of P as well, that is

A

PiUs(z1,22,. .. Tiy. ., X, xa) = BUN(T1, 22, .., Tiy ., Ty, TA),
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where £ is the eigenvalue of P. We have introduced the suffix ij in order to
indicate that we permute particles ¢ and j. The Pauli principle tells us that the
total wave function for a system of fermions has to be antisymmetric, resulting
in the eigenvalue g = —1.

In our case we assume that we can approximate the exact eigenfunction with
a Slater determinant

1/)a(l‘1) %(932) %(JJA)
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(3)
where x; stand for the coordinates and spin values of a particle 4 and «, 5, ...,

are quantum numbers needed to describe remaining quantum numbers.

Brief reminder on some linear algebra properties. Before we proceed
with a more compact representation of a Slater determinant, we would like to
repeat some linear algebra properties which will be useful for our derivations of
the energy as function of a Slater determinant, Hartree-Fock theory and later
the nuclear shell model.

The inverse of a matrix is defined by

AV A=
A unitary matrix A is one whose inverse is its adjoint
A7l =Al

A real unitary matrix is called orthogonal and its inverse is equal to its transpose.
A hermitian matrix is its own self-adjoint, that is

A=AT
Relations Name matrix elements
A=AT symmetric aij = j;
A= AT)fl real orthogonal — »", ajrajr = >\ ariar; = dij
A= A" real matrix aij = aj;
A=Al hermitian a;j = aj;
-1 . * *
A= AT) unitary >k Qi = Dok @ik = 0ij

Since we will deal with Fermions (identical and indistinguishable particles)
we will form an ansatz for a given state in terms of so-called Slater determinants
determined by a chosen basis of single-particle functions.



For a given n x n matrix A we can write its determinant

ai;r a2 ... ... Qin
a21 as2 a2,
det(A)=|A|=| ... ... ... ... .|,
Ap1 QAp2 ... ... Qpp

in a more compact form as

n!

|A| = Z(—l)pipiCLllCLQQ c e Qpn,

i=1

where P, is a permutation operator which permutes the column indices 1,2,3,...,n

and the sum runs over all n! permutations. The quantity p; represents the num-

ber of transpositions of column indices that are needed in order to bring a given

permutation back to its initial ordering, in our case given by ajiaos ... an, here.
A simple 2 x 2 determinant illustrates this. We have

a1l a2
a21 Qa2

det(A) =

= (=1)%a11a92 + (1) ai2a01,

where in the last term we have interchanged the column indices 1 and 2. The
natural ordering we have chosen is aj1a22.

Back to the derivation of the energy. The single-particle function ), (x;)
are eigenfunctions of the onebody Hamiltonian h;, that is

ho(xi) = £(2s) + Tess (),
with eigenvalues
ho (@) ta (i) = (E(@i) + fiexe (21)) Ya(@:) = €atha(@s).

The energies €, are the so-called non-interacting single-particle energies, or
unperturbed energies. The total energy is in this case the sum over all single-
particle energies, if no two-body or more complicated many-body interactions
are present.

Let us denote the ground state energy by Ey. According to the variational
principle we have

Ey < E[®] = /cb*ﬁcde

where ® is a trial function which we assume to be normalized

/<I>*<I)d7- =1,

where we have used the shorthand dr = dx1drs ...dr4.



In the Hartree-Fock method the trial function is the Slater determinant of
Eq. (3) which can be rewritten as

(b(xlaan" .,l‘A,O{,,@,..., \/72 Pwa T ’(/),@(xQ) ¢u($A) = \/EA(I)Ha

where we have introduced the antisymmetrization operator A defined by the
summation over all possible permutations of two particles.

It is defined as 1
A= 3P, ()
p

with p standing for the number of permutations. We have introduced for later
use the so-called Hartree-function, defined by the simple product of all possible
single-particle functions

(I)H(.T17$27...,IA7O[,5,...7V) = wa(ml)wﬂ(xQ)wl/(xA)

Both Hy and H; are invariant under all possible permutations of any two
particles and hence commute with A

[Ho, A] = [H;, A] = 0. (5)

Furthermore, A satisfies

~

A2 = A, (6)

since every permutation of the Slater determinant reproduces it.
The expectation value of Hy

/ d* Hy®dr = Al / &L AH A dr
is readily reduced to
/ d* Hyddr = Al / &% HyAd rdr,

where we have used Egs. (5) and (6). The next step is to replace the anti-
symmetrization operator by its definition and to replace Hy with the sum of
one-body operators

A
/q)*ﬁocbdr = ZZ(-)P/@’;I?LOP%dT.
i=1 p

The integral vanishes if two or more particles are permuted in only one of
the Hartree-functions ® 5 because the individual single-particle wave functions
are orthogonal. We obtain then

A
/@*ﬁoqm = Z/@};/}O@Hdr
=1



Orthogonality of the single-particle functions allows us to further simplify the
integral, and we arrive at the following expression for the expectation values of
the sum of one-body Hamiltonians

A
/ " Hy®dr = / ¥ (2)hoty () ddr. (7)
pn=1
We introduce the following shorthand for the above integral

(ulolis) = / 5 () hot, (2)de

and rewrite Eq. (7) as

A

[ Bt =S uliol). (5)

p=1
The expectation value of the two-body part of the Hamiltonian is obtained
in a similar manner. We have

/ o*H;ddr = Al / &4 AH[AD ydr,

which reduces to

/<I> Hi®dr = Z > (=) /<I>Hv (rij) P® dr,

1<j=1 p

by following the same arguments as for the one-body Hamiltonian.
Because of the dependence on the inter-particle distance 7;;, permutations of
any two particles no longer vanish, and we get

O H ®dr = O3 0(ri;)(1 — Pij)Ppdr.
H J J

1<j=1

where P;; is the permutation operator that interchanges particle ¢ and particle
j. Again we use the assumption that the single-particle wave functions are
orthogonal.

We obtain

/<1> Hi®dr = - ZZ Uzzj ()05 ()0 (75 ()b, () dayda, (9)

- / ()0 ()0 (rig o (b () dzad; | - (10)

The first term is the so-called direct term. It is frequently also called the Hartree
term, while the second is due to the Pauli principle and is called the exchange



term or just the Fock term. The factor 1/2 is introduced because we now run
over all pairs twice.

The last equation allows us to introduce some further definitions. The single-
particle wave functions ¢, (x), defined by the quantum numbers p and z are
defined as the overlap

Yo () = (z|a).

We introduce the following shorthands for the above two integrals

(vl av) = / ()8 ()0 Y (e by () decad

and

(o) = / B W )0 (rig W (s b s,

Preparing for later studies: varying the coefficients of a
wave function expansion and orthogonal transformations

It is common to expand the single-particle functions in a known basis and vary
the coefficients, that is, the new single-particle wave function is written as a
linear expansion in terms of a fixed chosen orthogonal basis (for example the
well-known harmonic oscillator functions or the hydrogen-like functions etc). We
define our new single-particle basis (this is a normal approach for Hartree-Fock
theory) by performing a unitary transformation on our previous basis (labelled
with greek indices) as

U =" Cpada. (11)
X

In this case we vary the coeflicients Cp. If the basis has infinitely many solutions,
we need to truncate the above sum. We assume that the basis ¢, is orthogonal.

It is normal to choose a single-particle basis defined as the eigenfunctions of
parts of the full Hamiltonian. The typical situation consists of the solutions of
the one-body part of the Hamiltonian, that is we have

hodr = exa.

The single-particle wave functions ¢, (r), defined by the quantum numbers A
and r are defined as the overlap

PA(r) = (r[A).

In deriving the Hartree-Fock equations, we will expand the single-particle
functions in a known basis and vary the coefficients, that is, the new single-
particle wave function is written as a linear expansion in terms of a fixed chosen
orthogonal basis (for example the well-known harmonic oscillator functions or
the hydrogen-like functions etc).



We stated that a unitary transformation keeps the orthogonality. To see this
consider first a basis of vectors v;,

V; =
Vin
We assume that the basis is orthogonal, that is

vT

j V; = 51]

An orthogonal or unitary transformation
W; = UV,L'7
preserves the dot product and orthogonality since

wiw; = (Uv;)TUv, = vaTUvi =vT

j ]Vi:(si]‘.

This means that if the coefficients C,\ belong to a unitary or orthogonal
trasformation (using the Dirac bra-ket notation)

) =3 Coal),
A

orthogonality is preserved, that is (a|8) = dag and (p|g) = dpq-

This propertry is extremely useful when we build up a basis of many-body
Stater determinant based states.

Note also that although a basis |a) contains an infinity of states,
for practical calculations we have always to make some truncations.

Before we develop for example the Hartree-Fock equations, there is another
very useful property of determinants that we will use both in connection with
Hartree-Fock calculations and later shell-model calculations.

Consider the following determinant

a1bi1 + aasbia  aia _ bii a2 b1z a2
b b =y taz)y,
Q1021 + Qi2b22  a22 21 (22 22 (22
We can generalize this to an n x n matrix and have
n
ain a2 D k=1 Ckb1k a1n ail  a b1k
n
a1 az > k=1 Ckb2k a2p n a1 a2 boy
.o = E Ck
. k=1 .
n
an1  ap2 Zk:l Ckbnk Apn an1  ap2 bnk

This is a property we will use in our Hartree-Fock discussions.

A1n
a2n

ann



We can generalize the previous results, now with all elements a;; being given

as functions of linear combinations of various coefficients ¢ and elements b;;,

Yoheibikcrr Do bwkerz oo Dop_ibikCri oo Dop_q bikCin
n n n n
Dopeq barcrr D op_qbakcr2 oo D op_ibarcr; .. D op_q bakCrn
= det(C)det(B),
Zzzl bnkCr1 ZZ:l bnkcka - Zzzl bnkckj s Zzzl bnkCrn

where det(C) and det(B) are the determinants of n X n matrices with elements
cij and b;; respectively. This is a property we will use in our Hartree-Fock
discussions. Convince yourself about the correctness of the above expression by
setting n = 2.

With our definition of the new basis in terms of an orthogonal basis we have

(@) =D Coroa()
A

If the coeflicients C)py belong to an orthogonal or unitary matrix, the new basis
is also orthogonal. Our Slater determinant in the new basis ¥, (z) is written as

Vp(@1) Pp(x2) oo .o Yp(xa) 2 Cmda(m1) Do\ Cpadalxa) -0 oo 2, Cpaga(a
1 Pe(x1) Yg(z2) .. .. Yg(za) 1 DA Capda(z1) Do\ Copda(za) ... ... Y, Coadala
VAT T VA N . o .

1/%(561) 1/%(%2) 1Pt(fEA) ZACD\¢)\($1) ZACMQS)\(I'Q) ZACtA¢A($

which is nothing but det(C)det(®), with det(®) being the determinant given by
the basis functions ¢y (x).

In our discussions hereafter we will use our definitions of single-particle states
above and below the Fermi (F') level given by the labels ijkl--- < F for so-called
single-hole states and abed--- > F for so-called particle states. For general
single-particle states we employ the labels pgrs. ...

The energy functional is

A A
= {ulhlp) + Z leluv A8,

hS

I\D\H

we found the expression for the energy functional in terms of the basis function
ox(r). We then varied the above energy functional with respect to the basis
functions |u). Now we are interested in defining a new basis defined in terms of
a chosen basis as defined in Eq. (11). We can then rewrite the energy functional

as
A

E[®Nev) = Z i|hli) Z(UWW)AS, (12)

i=1 zj=1

where @Y% is the new Slater determinant defined by the new basis of Eq. (11).



Using Eq. (11) we can rewrite Eq. (12) as

A 1 A
B =3 > CiCislalhlB)+35 > > CiaCisCinCislablihid)as. (13)

i=1 af ij=1 afvyo

Definitions and Second quantization

We introduce the time-independent operators a, and a, which create and
annihilate, respectively, a particle in the single-particle state ¢,. We define the
fermion creation operator a,

al|0) = |a), (14)

and
allar ... an)as = |aag ... an)as (15)

In Eq. (14) the operator a acts on the vacuum state |0), which does not
contain any particles. Alternatively, we could define a closed-shell nucleus or
atom as our new vacuum, but then we need to introduce the particle-hole
formalism, see the discussion to come.

In Eq. (15) af, acts on an antisymmetric n-particle state and creates an
antisymmetric (n + 1)-particle state, where the one-body state ¢, is occupied,
under the condition that o # a1, aq,...,a,. It follows that we can express
an antisymmetric state as the product of the creation operators acting on the
vacuum state.

log .. an)as = aLlaL2 .. .aL”

0) (16)

It is easy to derive the commutation and anticommutation rules for the
fermionic creation operators al,. Using the antisymmetry of the states (16)

o o e ap)as = —|ag Q. @ Q) AS (17)
we obtain

Using the Pauli principle

o .. ap.. ;. cap)as =0 (19)
it follows that
aLiaLi =0. (20)

If we combine Eqgs. (18) and (20), we obtain the well-known anti-commutation
rule
a:&ag + aga:& = {a], ag} =0 (21)

The hermitian conjugate of a, is

aq = (af)’! (22)



If we take the hermitian conjugate of Eq. (21), we arrive at
{aa,a3} =0 (23)

What is the physical interpretation of the operator a, and what is the effect
of a, on a given state |ajs ... an)as? Consider the following matrix element

(g ... aplag|adal ... al) (24)

where both sides are antisymmetric. We distinguish between two cases. The
first (1) is when « € {a;}. Using the Pauli principle of Eq. (19) it follows

(g . ..aplag =0 (25)
The second (2) case is when « ¢ {«;}. It follows that an hermitian conjugation
(1as ... aplas = {aarag . .. oy (26)

Eq. (26) holds for case (1) since the lefthand side is zero due to the Pauli
principle. We write Eq. (24) as

(g ... aplagladay .. al) = (aag ... ay|adial . ..al) (27)

Here we must have m = n + 1 if Eq. (27) has to be trivially different from zero.

For the last case, the minus and plus signs apply when the sequence o, a1, ag, . . ., ay,
and o, o, ..., a;, are related to each other via even and odd permutations.
If we assume that « ¢ {«;} we obtain

(ag ... aplag|afal ..ol 1) =0 (28)

when a € {a}}. If a ¢ {a}}, we obtain

ao |0y .. ah )20 =0 (29)
—_————
and in particular
a,]0) =0 (30)
If {aer;} = {a}}, performing the right permutations, the sequence o, aq, o, . . ., oy
is identical with the sequence o, a5, ..., a;, ;. This results in
(v1ag ... aplag|acias .. ay) =1 (31)
and thus
aglaaias...ap) = lojas .. ap) (32)

The action of the operator a, from the left on a state vector is to to remove
one particle in the state «. If the state vector does not contain the single-particle
state «, the outcome of the operation is zero. The operator a, is normally called
for a destruction or annihilation operator.

The next step is to establish the commutator algebra of af, and ag.

10



The action of the anti-commutator {al,,a,} on a given n-particle state is

alaa loarag .. an) =0
| S —

#a
aaazY larag ... an) = aq lacias .. .ap) = |ajas ... ay)
|
#a #a #a

if the single-particle state « is not contained in the state.
If it is present we arrive at

alaglonas .. oapaagyy .. omo1) = alae(—1)F|aaias ..o, 1)

= (—1)k‘040410£2 ce Oén_1> = ‘Oélaz BN 07710767 N R Ozn_1>

aaamalo@ QRO - Q1) = 0
From Egs. (33) and (34) we arrive at

{al a0} = al an + agal, =1

(33)

(34)

(35)

The action of {af,,as}, with o # 3 on a given state yields three possibilities.
The first case is a state vector which contains both o and 3, then either o or 3

and finally none of them.
The first case results in
aga5|a5a1a2 ceiQp_9) =0
a5a2|a6a1a2 e Qp_g) =0

while the second case gives

alas|Batas...an_1) =laaas...an_1)
#a #a
agal|Baras ... a, 1) =aglaf Baray ... a, 1)
IS I
=—|laaias...an_1)

#a

Finally if the state vector does not contain o and g

alaglaras ... o) = 0
#a,8

GBaL|Oé1Oé2-~-an> = a5|aa1a2...an):0
#a,8 #a,B

For all three cases we have

{al,ag} = alag + agal =0, a#p

11

(36)

(37)

(38)

(39)



We can summarize our findings in Egs. (35) and (39) as

{a:rxa aﬁ} = 504[3 (40)

with 6, is the Kroenecker d-symbol.
The properties of the creation and annihilation operators can be summarized
as (for fermions)

and
CLL|041 e an>AS = ‘0&0&1 e 05n>AS~

from which follows

o1+ cm)as = al, al, ...al, |0).

The hermitian conjugate has the folowing properties
Ao = (CLL)T-

Finally we found

ao |04 ... a1 )2a =0, in particular a,|0) =0,
—_—

and
aolaag .. .apn) = lajas ... ap),

and the corresponding commutator algebra

{ag7ag}:{aavaﬁ}:0 {alvaﬁ}:(saﬁ'

One-body operators in second quantization

A very useful operator is the so-called number-operator. Most physics cases
we will study in this text conserve the total number of particles. The number
operator is therefore a useful quantity which allows us to test that our many-
body formalism conserves the number of particles. In for example (d, p) or (p,d)
reactions it is important to be able to describe quantum mechanical states where
particles get added or removed. A creation operator af, adds one particle to the
single-particle state a of a give many-body state vector, while an annihilation
operator a,, removes a particle from a single-particle state «.

Let us consider an operator proportional with aLag and a = B. It acts on
an n-particle state resulting in

0 aé¢{a;}
alagloras ... o) = (41)

lorag .. an) o€ {a}

12



Summing over all possible one-particle states we arrive at

<Z ajlaa> loaras ... an) =nlagas ... ay) (42)

The operator

N= Z al ag (43)

is called the number operator since it counts the number of particles in a give
state vector when it acts on the different single-particle states. It acts on one
single-particle state at the time and falls therefore under category one-body
operators. Next we look at another important one-body operator, namely H,
and study its operator form in the occupation number representation.

We want to obtain an expression for a one-body operator which conserves
the number of particles. Here we study the one-body operator for the kinetic
energy plus an eventual external one-body potential. The action of this operator
on a particular n-body state with its pertinent expectation value has already
been studied in coordinate space. In coordinate space the operator reads

= 3 o) (4

and the anti-symmetric n-particle Slater determinant is defined as
D(x1, T2,y Ty AL, A2y ey Q) = \/>Z VP, (1) 0y (€2) - . - a, (€0)-

Defining
(1'7,)1/1047 z Z¢a £E7 ak|h0|ak> (45)

k

we can easily evaluate the action of H, on each product of one-particle functions
in Slater determinant. From Eq. (45) we obtain the following result without
permuting any particle pair

(Z 30(%)> Vo, (21)Va, (22) - - - Yo, (T0)
= > (ohlholan) oy (21) V0, (32) - . e, ()

+ Z(al2|ﬁ0|a2>wa1 (xl)'(/)a; (x2) AR wan (xn)
+
+ Z<a{n|ﬁo|an>¢al ($1)¢a2 (1’2) s Z/Jagl (xn) (46)

/

aTL

13



If we interchange particles 1 and 2 we obtain

(Z Bo@i)) Vo, (T2)Ya, (72) - - Yo, (Tn)

= > (ablhola)a, (w2)tay (1) - - o, ()

/

+ > (e lholar) e (22)tas (21) - - Y, (20)
+ ..
+ Z(Oﬁ%momn)%l (x2)1/)a1 (.%‘2) s wa; (mn)

’
an

(47)

We can continue by computing all possible permutations. We rewrite also
our Slater determinant in its second quantized form and skip the dependence on
the quantum numbers z;. Summing up all contributions and taking care of all

phases (—1)? we arrive at

Holay, ag, ... o) = Z(ai|ﬂ0|a1>|a’1a2...
o
+ > {ablholaz)|arad ...
o
+
+ > (e holan) sz ..

’
n

[e3%

Q)

Q)

Lay,)

(48)

In Eq. (48) we have expressed the action of the one-body operator of Eq. (44)
on the n-body state in its second quantized form. This equation can be further
manipulated if we use the properties of the creation and annihilation operator

on each primed quantum number, that is
’ _ T
lorag .. ap .. .ap) = a%aak|a1ag...ak...an>

Inserting this in the right-hand side of Eq. (48) results in

Holajos ... ayn) = Z<04/1‘}Al0|041>al/1aa1|a1‘12-~-
o
+ Z(a’z\ﬁ0|a2>aléaa2|a1a2...
o)
_|_
+ Z(a;|ﬁo|an>alga% laras ...
ag,
= Z(aﬁzdﬁ)a&aﬂalag...
a,B

14
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(49)



In the number occupation representation or second quantization we get the
following expression for a one-body operator which conserves the number of
particles

Hy = (alho|B)alas (51)
af

Obviously, Hy can be replaced by any other one-body operator which preserved
the number of particles. The stucture of the operator is therefore not limited to
say the kinetic or single-particle energy only.

The opearator H, takes a particle from the single-particle state 3 to the single-
particle state a with a probability for the transition given by the expectation
value (a|h|B).

It is instructive to verify Eq. (51) by computing the expectation value of Hy
between two single-particle states

(anlholaz) = " (alho|B)(0]aq, afagal, |0) (52)
af

Using the commutation relations for the creation and annihilation operators
we have

aa,alagal, = (Baa, — ala,)(0pa, — al,as), (53)
which results in
<O|aala2a5a22|0> = baa;08az (54)
and
(enlholan) = (alho|B)0an Spas = (ar|holor2) (55)
af

Two-body operators in second quantization

Let us now derive the expression for our two-body interaction part, which also
conserves the number of particles. We can proceed in exactly the same way
as for the one-body operator. In the coordinate representation our two-body
interaction part takes the following expression

ﬁ[ = ZV(EZ,wj) (56)

where the summation runs over distinct pairs. The term V' can be an interaction
model for the nucleon-nucleon interaction or the interaction between two electrons.
It can also include additional two-body interaction terms.

The action of this operator on a product of two single-particle functions is
defined as

V(@i @) o, (@) (73) = Y Wb, ()00, (@) (@ aqldlagas) — (57)

! ’
X

15



We can now let H 7 act on all terms in the linear combination for |ajas . .. ay,).
Without any permutations we have

Z V (i, 'Tj) Vo, (T1)Vay (72) - - Yo, (Tn)

1<J
= Z <0/10/2\@\CV1042>¢;1($1)1/J;2 (z2) . Ya, (Tn)
+
+ Z <0/10<;J77|04104n>1/}:11 (331)1/%12 (372) R Wan (ajn)
+
+ Z <a/2a;z‘@|a2an>¢a1 (xl)wlaz (732) e ¢/an (mn)
+ (58)

where on the rhs we have a term for each distinct pairs.
For the other terms on the rhs we obtain similar expressions and summing
over all terms we obtain

Hrlogas . ..ap) = Z (oo |Dlagasg)|adal . .. an)
o,
+
+ Z {ah|Plagan)|a)as ... )
afa,
_l’_
+ Z {ahal |Dlagan)|arah ... al)
ag.al,
+ . (59)

We introduce second quantization via the relation

T

.i.
a%aa;aalaakmlag e Qe QL Q)

= (—1)k_1(—1)1_2(12;@2261041(1%|OékOél Q2 ... Q)

#ag,a
= (1)1 (=D 2|ahe) cqas ... ap)
ol o
= latas ... af . ..ap ... ap) (60)

16



Inserting this in (59) gives

Hilorag ... ap) = Z (o/la’Q|6|a1a2)al,lal,2aa2aal a1ag ... Q)
aq,ah
_l’_
= Z (o/loz;z\@|a1an>alaalaaanaal Q12 ... Q)
aq,an
_l’_
- Z (0/204;1\@|agan>al,2a:;;baa"aa2 ajay ... o)
agal,
+

!

= Z <aﬁ|@|v§)ala£a5a7|a1a2 coap)  (61)
a,B8,7,6

Here we let Z' indicate that the sums running over a and 8 run over all single-
particle states, while the summations v and § run over all pairs of single-particle
states. We wish to remove this restriction and since

(aB[olyd) = (Balo|0v) (62)
we get
Z(aﬁ\ﬁhé)a&agawv = Z(/Bam&y)agaga(g% (63)
aff ap
= Z(ﬁa\ﬂéy)a};alava(g (64)
af

where we have used the anti-commutation rules.
Changing the summation indices o and § in (64) we obtain

Z(aﬂ\@h&a:&a};a,;a.y = Z(aﬂw&y)alagava(g (65)
af af
From this it follows that the restriction on the summation over v and § can be
removed if we multiply with a factor %, resulting in

Hr= - Z (aﬁ|@\’y§)a£a;a5aﬂ, (66)
afyo
where we sum freely over all single-particle states «, 3, v og d.

With this expression we can now verify that the second quantization form
of H; in Eq. (66) results in the same matrix between two anti-symmetrized
two-particle states as its corresponding coordinate space representation. We
have

N 1 R
(12 Frl312) = 3 3 {aB1i0) (0], 0, ol alasaral al, 00, (67)
afvyé
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Using the commutation relations we get
aQQaalaLa;ga(;ayagla;?
= Qo aalaj;a;g(ag&yﬁlagz — a(;agl aﬁya}b)
= aazaalagag(dwlég% - 5V51a22a5 - a,;agléwb + a(;a;la}?ay)
= Gy aalaza}; (048,068, — (5751(1};2 as
—053, 08, + &,Bzagla(; + a(;a};la};aw) (68)
The vacuum expectation value of this product of operators becomes
(0lapy oy alaga5a7a21 a%z |0)
= (85,055, — 055,045) (Ol aay albal|0)
= (046,058, — 058,0+5,) (Va1 98, — 980 Oaars ) (69)

Insertion of Eq. (69) in Eq. (67) results in

(aras|Hi|B1Ba)

[(a1002]0]B182) — (o1 2|8|B231)
—{a01 |0]81B2) + (@21 []B21)]
= <CV1042|17|5152> - (ala2|@|ﬁ251>
= (102|031 P2) As- (70)

DN | =

The two-body operator can also be expressed in terms of the anti-symmetrized
matrix elements we discussed previously as

A~

1 A
Hy = B Z (aﬁ|v|’y(5>a2aga5a7
afyé
1 ~ A~
= 1 2 [(@Blolr6) — (apB[o]oy)] alafasa,
afyé
1 A
- T (aBlo]yd) asalalasay (71)
afyé

The factors in front of the operator, either % or % tells whether we use
antisymmetrized matrix elements or not.

We can now express the Hamiltonian operator for a many-fermion system in
the occupation basis representation as

A 1 .
H= Z<a|t + Gext |B)al ap + 1 Z (aﬁ|v\76)ala;a5a7. (72)
o, aBvyé

This is the form we will use in the rest of these lectures, assuming that we work
with anti-symmetrized two-body matrix elements.
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Particle-hole formalism

Second quantization is a useful and elegant formalism for constructing many-body
states and quantum mechanical operators. One can express and translate many
physical processes into simple pictures such as Feynman diagrams. Expecation
values of many-body states are also easily calculated. However, although the
equations are seemingly easy to set up, from a practical point of view, that is the
solution of Schroedinger’s equation, there is no particular gain. The many-body
equation is equally hard to solve, irrespective of representation. The cliche
that there is no free lunch brings us down to earth again. Note however that
a transformation to a particular basis, for cases where the interaction obeys
specific symmetries, can ease the solution of Schroedinger’s equation.

But there is at least one important case where second quantization comes
to our rescue. It is namely easy to introduce another reference state than the
pure vacuum |0), where all single-particle states are active. With many particles
present it is often useful to introduce another reference state than the vacuum
state|0). We will label this state |¢) (¢ for core) and as we will see it can reduce
considerably the complexity and thereby the dimensionality of the many-body
problem. It allows us to sum up to infinite order specific many-body correlations.
The particle-hole representation is one of these handy representations.

In the original particle representation these states are products of the creation
operators af, acting on the true vacuum |0). Following Eq. (16) we have

al, al, ...al, _ al |0) (73)

larag ... ap_yap)

ay o tan—1
loras . .. a1 apt1) = allalz ---aln,l (1;4 (Txnﬂ‘ ) (74)
lorag .. ap_1) = al, al_...al, _|0) (75)

If we use Eq. (73) as our new reference state, we can simplify considerably
the representation of this state

0) (76)

The new reference states for the n + 1 and n — 1 states can then be written as

le) = Jaras ... an_1a,) = aLlaLZ .. .aLnil L

larag ... ap_1 1) = (—1)"@271+1 lc) = (=1)"|ant1)e (77)
s .. py) = (—1)" g, lc) = (=) Han_1)e (78)

The first state has one additional particle with respect to the new vacuum
state |¢) and is normally referred to as a one-particle state or one particle added
to the many-body reference state. The second state has one particle less than the
reference vacuum state |¢) and is referred to as a one-hole state. When dealing
with a new reference state it is often convenient to introduce new creation and
annihilation operators since we have from Eq. (78)

aqlc) #0 (79)

since « is contained in |¢), while for the true vacuum we have a,|0) = 0 for all a.
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The new reference state leads to the definition of new creation and annihilation
operators which satisfy the following relations

balc) = 0 (80)
{0, b5} = {babs} = 0
{bl,,bs} = Sap (81)

We assume also that the new reference state is properly normalized
(ce) =1 (82)

The physical interpretation of these new operators is that of so-called quasi-
particle states. This means that a state defined by the addition of one extra
particle to a reference state |¢) may not necesseraly be interpreted as one particle
coupled to a core. We define now new creation operators that act on a state «

creating a new quasiparticle state
al|c) = |a), a>F
l¢) = (83)

agle) =la™h), a<F

where F' is the Fermi level representing the last occupied single-particle orbit of

the new reference state |c).
The annihilation is the hermitian conjugate of the creation operator

ba = (bL)T’
resulting in
al, a>F ao a>F
bl = { b = { (84)
aq a<F a:g a< F

With the new creation and annihilation operator we can now construct many-
body quasiparticle states, with one-particle-one-hole states, two-particle-two-hole
states etc in the same fashion as we previously constructed many-particle states.

We can write a general particle-hole state as

1B1B2 - By vz ) = b b ...bgnp b, bl, .. bL ey (85)

>F <F

We can now rewrite our one-body and two-body operators in terms of the new
creation and annihilation operators. The number operator becomes

N=> alao=> biba+n.— Y biba (86)

a>F a<lF
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where n. is the number of particle in the new vacuum state |c¢). The action of
N on a many-body state results in

NIBBz . B, 7 72 A ) = (p e — )| BB B, 1 3T,
(87)
Here n = ny +n. — ny, is the total number of particles in the quasi-particle state
of Eq. (85). Note that N counts the total number of particles present

Ny, = Z bl be, (88)

gives us the number of quasi-particles as can be seen by computing

Nop = 18182 Bu, 1 72 ) = (p H 1) B1B2 o By 92 v,
(89)
where ng, = np, + ny, is the total number of quasi-particles.
We express the one-body operator Hy in terms of the quasi-particle creation
and annihilation operators, resulting in

o= > {alholdbibs+ > [(alhol8)bLbL + (Blfola)bsba]
aBf>F a>F,B<F
+ S (alhola) = 3= (Blhola)blbs  (90)
a<lF afB<F

The first term gives contribution only for particle states, while the last one
contributes only for holestates. The second term can create or destroy a set of
quasi-particles and the third term is the contribution from the vacuum state |c).

Before we continue with the expressions for the two-body operator, we
introduce a nomenclature we will use for the rest of this text. It is inspired by
the notation used in quantum chemistry. We reserve the labels i, j, k,... for
hole states and a, b, c,... for states above F, viz. particle states. This means
also that we will skip the constraint < F' or > F' in the summation symbols.
Our operator H, reads now

Ho = S falhlb)elo + 3 [(alhliybib] + ilhlabb,
ab ai
+ > (ilhli) = S Glhiole, (1)
i ij

The two-particle operator in the particle-hole formalism is more complicated
since we have to translate four indices a8vd to the possible combinations of
particle and hole states. When performing the commutator algebra we can
regroup the operator in five different terms

=0+ 0" + a0+ 1 + 1y (92)
Using anti-symmetrized matrix elements, bthe term I:I§a) is
A( ) - ]_ A
Y = %(ab|V|cd>belbdbc (93)
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The next term ﬁ}b) reads

N 1 N N
P=7> (<ab|V|cz'>b,§bgbI be + (ai|V|cb>beibbbc) (94)
abci
This term conserves the number of quasiparticles but creates or removes a
three-particle-one-hole state. For I—?}C) we have

7y (c 1 S P
© > (<ab|V|m>bgbltb}b} + (zg\V\ab)babbbjbi) +

abij

1 e 1 .
3 > (ai|V|bj)biblbyb; + 3 > ailV|bi)bib,.  (95)

abij abi

The first line stands for the creation of a two-particle-two-hole state, while
the second line represents the creation to two one-particle-one-hole pairs while
the last term represents a contribution to the particle single-particle energy from
the hole states, that is an interaction between the particle states and the hole
states within the new vacuum state. The fourth term reads

~ 1 N N
a9 = > (<ai|V\jk>bgb;b}bi + <jz'|V|ak:>bLbjbiba) n
aijk
1 TS TS T
1 Z ((az|V|jz>blb; + (ji|V|ai) — <]Z|V|za>bjba) . (96)
aij

The terms in the first line stand for the creation of a particle-hole state interacting
with hole states, we will label this as a two-hole-one-particle contribution. The
remaining terms are a particle-hole state interacting with the holes in the vacuum
state. Finally we have

~e) 1 o 1 PSR 1 s s
1 = 3 2 (RUVIg)bbTobe 4+ 5 > (a5 VIkibbs + 5 D (isIVIi)  (97)
ijkl ijk ij

The first terms represents the interaction between two holes while the second
stands for the interaction between a hole and the remaining holes in the vacuum
state. It represents a contribution to single-hole energy to first order. The last
term collects all contributions to the energy of the ground state of a closed-shell
system arising from hole-hole correlations.

Summarizing and defining a normal-ordered Hamil-
tonian

N

A
1 ~
@As(al,...,aA;xl,...mA): AZ(—l)PPHwai(xi),
P i=1
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which is equivalent with |oy ... ax) = af,, ...al,,]0). We have also
a;r,|0> = |p), ap|Q> = pq|0>

Opg = {ap,a:;} )

and
0= {a;’aq} ={ap,aq} = {a,t,ag
|<I>0>:\a1...oz,4>, Oq,...,OéASOéF
{al;vaq} = 5pq7paq <ap
{apva:;} = 0pq, P, q > OF
with ¢,j,... < ap, a,b,...>ap, p,q,...—any
a;|®o) = |®;),  al|Po) = |®%)
and

al|®o) =0 aq|®o) =0

The one-body operator is defined as

F=> (plfla)alaq
pq
while the two-body opreator is defined as
~oo 1
V= Z Z<pq|®‘T5>ASaLa:;asar
pqrs

where we have defined the antisymmetric matrix elements
(pqldlrs)as = (pqld|rs) — (pq|d|sr).
We can also define a three-body operator

N 1 N
fum LS Goalisistuyasafafal s,

pgrstu

with the antisymmetrized matrix element

(pqr|vs|stu) as = (pqr|vs|stu) + (pqr|s|tus) + (pqr|vs|ust) — (pqr|os|sut) — (pqr|vs|tsu) — (pqr|os|uts).
(98)
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Hartree-Fock in second quantization and stability
of HF solution

We wish now to derive the Hartree-Fock equations using our second-quantized
formalism and study the stability of the equations. Our ansatz for the ground
state of the system is approximated as (this is our representation of a Slater
determinant in second quantization)

o) = |c) = alal...a]|0).
We wish to determine 4" so that EF'F = (¢|H|c) becomes a local minimum.

In our analysis here we will need Thouless’ theorem, which states that an
arbitrary Slater determinant |¢’) which is not orthogonal to a determinant

n
le) = Ha&i |0), can be written as
i=1

|y = exp Z Z Cuiala; 3 |c)

a>Fi<F

Let us give a simple proof of Thouless’ theorem. The theorem states that
we can make a linear combination av particle-hole excitations with respect to
a given reference state |¢). With this linear combination, we can make a new
Slater determinant |¢’) which is not orthogonal to |c), that is

{clc) #0.

To show this we need some intermediate steps. The exponential product of
two operators exp A X exp B is equal to exp (A 4+ B) only if the two operators

commute, that is o
[A,B] =0.

Thouless’ theorem

If the operators do not commute, we need to resort to the Baker-Campbell-
Hauersdorf. This relation states that

eXpC’ = expflexpé,

with
A Aooa 1 oa 1.+ A~ 1.~ A~ .
C=A+B+-[A B+ —<l[lA, B],B] — —=[[A4,B],A] + ...
+ B+ 54, B+ 5[4, B), B - T[4, B, 4] +
From these relations, we note that in our expression for |¢’) we have commutators
of the type
labai, aja;),
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and it is easy to convince oneself that these commutators, or higher powers
thereof, are all zero. This means that we can write out our new representation
of a Slater determinant as

2
|C'> = exp Z Z CM'CLZCLZ‘ |C> = H 1+ Z Caialai + (Z Caia2ai> + ...

a>F i<F i a>F a>F

We note that

H Z C’ma a; Z C’blabal =0,

i a>F b>F

and all higher-order powers of these combinations of creation and annihilation
operators disappear due to the fact that (a;)"|c) = 0 when n > 1. This allows
us to rewrite the expression for |¢/) as

) = H{1+ZC¢uaaz} :

a>F

which we can rewrite as

/) = H{1+an‘a az}|aZl al ...al

i a>F

0).
The last equation can be written as

1) = H {1 + Z C’aialai} |ajla22 e (1 + Z Cai, aa“> a;. (99)

% a>F a>F

<1 + > Cana aam) al,...|0) = H ( T+ Cuial ) (100)
a>F a>F

New operators

If we define a new creation operator

b:r = a;{ + Z Caia:rm (101)

a>F

we have
¢y = Hbj|0> = H (a + Z Caial )
i a>F

meaning that the new representation of the Slater determinant in second quan-
tization, |¢'), looks like our previous ones. However, this representation is not
general enough since we have a restriction on the sum over single-particle states
in Eq. (101). The single-particle states have all to be above the Fermi level. The
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question then is whether we can construct a general representation of a Slater
determinant with a creation operator

BI = Z fipal;a
p

where f;;, is a matrix element of a unitary matrix which transforms our creation
and annihilation operators a' and a to b' and b. These new operators define a
new representation of a Slater determinant as

& = [#l10).

Showing that |¢) = |¢)
= |

We need to show that |¢)
not orthogonal to |c), that is

(o) = Olan, o rvan | 32 fnt | [ 32 fonal (zf*) o,

pP=1i1 g=1i1 t=iy

). We need also to assume that the new state is
c|é) # 0. From this it follows that

which is nothing but the determinant det(f;,) which we can, using the interme-
diate normalization condition, normalize to one, that is

det(fip) =1,

meaning that f has an inverse defined as (since we are dealing with orthogonal,
and in our case unitary as well, transformations)

> finfigh =i,
k

and

Z fglfjk = Oik-
J

Using these relations we can then define the linear combination of creation
(and annihilation as well) operators as

o0 o0
DN =D A Yty =i+ )0 >0 ful fadl
7 7 p=i1 % P:in+1

Defining
o= Y fii' Fims

i<F

we can redefine

(o) o0
a+>. D filfeey=al+ Y ewal = b,

i p=in41 P=tn41
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our starting point. We have shown that our general representation of a Slater
determinant )
@ = TT0l10) = Iy = T vl10).
i i

with
oo
bL = al + Z ckpa;[).
P=ln+t1
This means that we can actually write an ansatz for the ground state of the
system as a linear combination of terms which contain the ansatz itself |c) with
an admixture from an infinity of one-particle-one-hole states. The latter has

important consequences when we wish to interpret the Hartree-Fock equations
and their stability. We can rewrite the new representation as

) = le) + [dc),

where |dc) can now be interpreted as a small variation. If we approximate this
term with contributions from one-particle-one-hole (1p-1h) states only, we arrive

at
) = (1 +y 5C’ma2ai> lc).

at

In our derivation of the Hartree-Fock equations we have shown that
(d¢|Hle) =0,
which means that we have to satisfy

(c| Z 6Cq; {ala;} Hle) =0.

With this as a background, we are now ready to study the stability of the
Hartree-Fock equations.

Hartree-Fock in second quantization and stability of HF
solution

The variational condition for deriving the Hartree-Fock equations guarantees
only that the expectation value (c|fl |c) has an extreme value, not necessarily a
minimum. To figure out whether the extreme value we have found is a minimum,
we can use second quantization to analyze our results and find a criterion for
the above expectation value to a local minimum. We will use Thouless’ theorem
and show that .
(¢1H]c)
(¢]e)

\%

(c|Hle) = Eo,

with
') = [e) +[dc).
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Using Thouless’ theorem we can write out |¢’) as

|c') = exp ZZ(SCMCL a; ¢ le) (102)

a>F i<F
1
= 1 + Z Z 5C’m-a:flai + E Z Z 5Cai50bjalaialaj + ... (103)
a>Fi<F " ab>F ij<F

where the amplitudes dC are small.
The norm of |¢) is given by (using the intermediate normalization condition

(cle) =1)
Ay =14 > 16Ca[* + O(6CE)).

a>Fi<F

The expectation value for the energy is now given by (using the Hartree-Fock
condition)

(| H|Y = (| Hle)+ > > 6C50Cy;{clalagHaas|c)+

ab>F ij<F

o0 Z Z 6Ci0Cy;(c|Hal, azabaJ| Z Z 6C;0Cy; c|a ayalag H|e)+.

ab>F ij<F ab>F ij<F

We have already calculated the second term on the right-hand side of the
previous equation

(el ({alaa}ir{alas}) o) = 32 3 6C26C; (plhola)iel ({olaaHajogHafas1) |0

e (104)
1303 6C58Ch (palolrs) el ({alan} ajalosar afos) ) o)
pqrezjub
(105)

resulting in

Eo Y 16Cail* + > 16Cail*(ca — €:) — > _(aj||bi)6C;,6Cy,;.
ai as ijab
tel (tafm}{ala) O ) &) = o (el (Vv {alai} {afas)) 1o
B C ajab ;g N ) |C) = BT C N1G,a; Ay, aj C
which is nothing but
Stel (VwfalaiH{alas}) o) = 5 " (Giflolab)) 6C50C;,

ijab
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or

1 N ¥ 5
5 Z(<ab|v|w>)5ca¢50bj

ijab
where we have used the relation
(al AJb) = ((b] AT|a))*

due to the hermiticity of Hand V.
We define two matrix elements

Aai,bj = — <Clj ‘ 1A]b2>

and
Byinj = (ablo]ij)

both being anti-symmetrized.
With these definitions we write out the energy as

(d|H|) = (1 +> |5cm|2> (clHlc) + > 16Cail* (" — ) + > Auij0C56Ch;+
ai ai ijab

(106)
1 1
3 > " Bj,4,0CaidChj + 5 > Baii0C;;0Cs; + O(5C3,), (107)

ijab ijab

which can be rewritten as
(d|H|Y = (1 + Z |5C’m;|2> (c|H|c) + AE + 0(502,;),

and skipping higher-order terms we arrived

(A AE
ey~ 0T A+, 100w

‘We have defined 1
AE = 5 {x|M|x)

with the vectors

x = [6C 6"
and the matrix
~ (A+A B

with Aai,bj = (Ea — Ei)éabaij-
The condition 1
AE = S(xIM[x) 20
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for an arbitrary vector
x = [6C sC*"

means that all eigenvalues of the matrix have to be larger than or equal zero. A
necessary (but no sufficient) condition is that the matrix elements (for all ai )

(€a — €i)0ab0ij + Aaip; > 0.

This equation can be used as a first test of the stability of the Hartree-Fock
equation.

Operators in second quantization

In the build-up of a shell-model or FCI code that is meant to tackle large
dimensionalities is the action of the Hamiltonian H on a Slater determinant
represented in second quantization as

lag .. ) = aLlaLZ .. aln|0>.
The time consuming part stems from the action of the Hamiltonian on the above
determinant,

1 .
Z<a|t +ulB)alas + 1 Z (aﬁ\vhé}aia%amv allaLQ .. aLJO).
af apByo

A practically useful way to implement this action is to encode a Slater determinant
as a bit pattern.

Assume that we have at our disposal n different single-particle orbits ag, o, . .., p_1
and that we can distribute among these orbits N < n particles.

A Slater determinant can then be coded as an integer of n bits. As an
example, if we have n = 16 single-particle states ag,a1,...,a15 and N = 4
fermions occupying the states as, ag, a9 and a3 we could write this Slater
determinant as

dp =al_al al al |0).

a3 Qg 10 (13

The unoccupied single-particle states have bit value 0 while the occupied ones
are represented by bit state 1. In the binary notation we would write this 16
bits long integer as

Qp Q1 Q2 Q3 Qq Q5 Qg Q7 Qg Q9 Q19 Q11 Q12 (13 Q14 Q15
o o o 1 o0 O 1 0 0 O 1 0 0 1 0 0

which translates into the decimal number
23 426 210 1 913 — 9288,

We can thus encode a Slater determinant as a bit pattern.
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With N particles that can be distributed over n single-particle states, the
total number of Slater determinats (and defining thereby the dimensionality of

the system) is
dim(H) = ( ¢ >

The total number of bit patterns is 2™.

We assume again that we have at our disposal n different single-particle
orbits ag, ag,...,a,—1 and that we can distribute among these orbits N < n
particles. The ordering among these states is important as it defines the order
of the creation operators. We will write the determinant

dp =al _al _al al |0),

a3 g 10 T (X13

in a more compact way as
@3 610,13 = |0001001000100100).
The action of a creation operator is thus

al,, ®3.6,10,13 = al,,[0001001000100100) = al,,af, al al, al, . |0),

Qg 3 e T (X10 (13

which becomes

—al _al al _al al |0) = —]0001101000100100).

Q3 g g TQ10 (13

Similarly

al, ®3,6,10,13 = al, |0001001000100100) = a, al, al al, al. . [0),

6 (10 Q13

which becomes
—al%(aJr )2aT al |0)

@6 @10 Q13

0!

This gives a simple recipe:

o If one of the bits b; is 1 and we act with a creation operator on this bit,
we return a null vector

e If b; = 0, we set it to 1 and return a sign factor (—1)!, where [ is the
number of bits set before bit j.

Consider the action of al_ on various slater determinants:
oo

al, ®oo111 = al,,[00111) =0 x |00111)
al, ®or011 = al,,[01011) = (—1) x [01111)
al, @111 = al,,[01101) =0 x |01101)
a:fm(l)onlo = CLL2|01110> =0x ‘01110>
al, P01 = al,[10011) = (—1) x [10111)
al, P11 = al,,[10101) =0 x [10101)
al, ®io110 = al,[10110) =0 x [10110)
al, @101 = al,[11001) = (+1) x [11101)
al, ®11010 = al,,[11010) = (+1) x [11110)
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What is the simplest way to obtain the phase when we act with one annihila-
tion(creation) operator on the given Slater determinant representation?
We have an SD representation

@A:aLOaT al, al, al 10,

a3 e (10 13

in a more compact way as
0 36,10,13 = |1001001000100100).
The action of

al,, @, ®o,3,6,10,13 = al,[0001001000100100) = af, al, al, al, al. . [0),

6 (10 Q13

which becomes

—al al al al al |0)=—]0001101000100100).

Q3 g T TQ10 (13

The action
A0, P0,3,6,10,13 = [0001001000100100),

can be obtained by subtracting the logical sum (AND operation) of Dy.3,6,10,13
and a word which represents only «ag, that is

|1000000000000000),

from @0,3,6,10713 = |1001001000100100>

This operation gives |0001001000100100).

Similarly, we can form aL4 oy 0,3,6,10,13, say, by adding |0000100000000000)
t0 aa,Po,3,6,10,13, first checking that their logical sum is zero in order to make
sure that orbital a4 is not already occupied.

It is trickier however to get the phase (—1)!. One possibility is as follows

e Let S be a word that represents the 1—bit to be removed and all others
set to zero.

In the previous example S; = |1000000000000000)

e Define S5 as the similar word that represents the bit to be added, that is
in our case

S2 =10000100000000000).
e Compute then S = S; — Ss, which here becomes
S =]0111000000000000)
e Perform then the logical AND operation of S with the word containing

0 3.6,10,13 = |1001001000100100),

which results in |0001000000000000). Counting the number of 1—bits gives the
phase. Here you need however an algorithm for bitcounting. Several efficient
ones available.

32



k

Exercise 1: Relation between basis functions

This exercise serves to convince you about the relation between two different
single-particle bases, where one could be our new Hartree-Fock basis and the
other a harmonic oscillator basis.

Consider a Slater determinant built up of single-particle orbitals 1y, with
A=1,2,..., A. The unitary transformation

wa = Z Ca)\(zb\a
A

brings us into the new basis. The new basis has quantum numbers a = 1,2, ..., A.
Show that the new basis is orthonormal. Show that the new Slater determinant
constructed from the new single-particle wave functions can be written as the
determinant based on the previous basis and the determinant of the matrix C.
Show that the old and the new Slater determinants are equal up to a complex
constant with absolute value unity. (Hint, C' is a unitary matrix).

Starting with the second quantization representation of the Slater determinant

n

by = HaLi|0>v

i=1

use Wick’s theorem to compute the normalization integral (®g|®g).
*

Exercise 2: Matrix elements
Calculate the matrix elements

(alag\ﬁ’\ala2>

and A
<041042|G‘041042>
with
) = al, a2|0>
F= Z alf|B)alag,
(alf18) = / U (@) f (s (@)da
% Z (afBg|yd)al aﬂa(gav,
apByd
and

(@Blgh6) = / / (@)W (e2)g (@, o)y (1) s (22) ey

Compare these results with those from exercise 3c).
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Exercise 3: Normal-ordered one-body operator
Show that the onebody part of the Hamiltonian

Ho = (plhola)a}a,,
Pq

can be written, using standard annihilation and creation operators, in normal-

ordered form as . . .
Hy = Z<p|h0|q> {a;r,aq} + Z<z|ho|z>
pq i

Explain the meaning of the various symbols. Which reference vacuum has been
used?

*

Exercise 4: Normal-ordered two-body operator
Show that the twobody part of the Hamiltonian

1 .
i1 = 2 Y taloirs)alalaar.
pgrs
can be written, using standard annihilation and creation operators, in normal-
ordered form as

o . R
Hy = > pdlolrs) {afafasar } + D (pildlai) {afag } + 5 D (ij[olid).

pqrs pqi ij

Explain again the meaning of the various symbols.
This exercise is optional: Derive the normal-ordered form of the threebody
part of the Hamiltonian.

. 1 N

Hs = %E _(par|vs|stu)afalalayasas,
pqr
stu

and specify the contributions to the twobody, onebody and the scalar part.

*

Exercise 5: Matrix elements using the Slater-Condon rule

The aim of this exercise is to set up specific matrix elements that will turn
useful when we start our discussions of the nuclear shell model. In particular
you will notice, depending on the character of the operator, that many matrix
elements will actually be zero.

Consider three N-particle Slater determinants |®o, |®¢) and |®§]), where
the notation means that Slater determinant |®¢) differs from |®¢) by one single-
particle state, that is a single-particle state v; is replaced by a single-particle
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state 1,. It is often interpreted as a so-called one-particle-one-hole excitation.
Similarly, the Slater determinant |<I>?;’> differs by two single-particle states from
|®o) and is normally thought of as a two-particle-two-hole excitation. We assume
also that |®¢) represents our new vacuum reference state and the labels ijk . ..
represent single-particle states below the Fermi level and abc. .. represent states
above the Fermi level, so-called particle states. We define thereafter a general
onebody normal-ordered (with respect to the new vacuum state) operator as

Fy =) (plf18) {aba,} ,

pq
with

wlfla) = / 5 @) F @b () der,

and a general normal-ordered two-body operator

A 1
Gy = 1 Z(pq|g|7'5>AS {a;agasar}7

pgars

with for example the direct matrix element given as

(palglrs) = / / 8 ()2 (22)g (@1, 22) (21 b (w2)dy o

with g being invariant under the interchange of the coordinates of two particles.
The single-particle states v; are not necessarily eigenstates of f The curly
brackets mean that the operators are normal-ordered with respect to the new
vacuum reference state.

How would you write the above Slater determinants in a second quantization
formalism, utilizing the fact that we have defined a new reference state?

Use thereafter Wick’s theorem to find the expectation values of

(Po| Fiv|@o),
and
(@0 N |®o).
Find thereafter
(®o|Ev|@),
and
(Bo|Gn| @),

Finally, find

(Dol En| @),
and

(Do|Gn[®F).
What happens with the two-body operator if we have a transition probability of
the type

(o|Gn| @),
where the Slater determinant to the right of the operator differs by more than
two single-particle states?
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Exercise 6: Program to set up Slater determinants

Write a program which sets up all possible Slater determinants given N = 4
eletrons which can occupy the atomic single-particle states defined by the 1s,
2s2p and 3s3p3d shells. How many single-particle states n are there in total?
Include the spin degrees of freedom as well.

*

Exercise 7: Using sympy to compute matrix elements
Compute the matrix element

(arasas|Gla) ahal),

using Wick’s theorem and express the two-body operator GG in the occupation
number (second quantization) representation.

*

Exercise 8: Using sympy to compute matrix elements

The last exercise can be solved using the symbolic Python package called
SymPy. SymPy is a Python package for general purpose symbolic algebra. There
is a physics module with several interesting submodules. Among these, the
submodule called secondquant, contains several functionalities that allow us to
test our algebraic manipulations using Wick’s theorem and operators for second
quantization.

from sympy import *
from sympy.physics.secondquant import *

i, j = symbols(’i,j’, below_fermi=True)
a, b = symbols(’a,b’, above_fermi=True)
p, q = symbols(’p,q’)

print simplify(wicks(Fd(i)*F(a)*Fd(p)*F(q)*Fd(b)*F(j), keep_only_fully_contracted=True))

The code defines single-particle states above and below the Fermi level, in
addition to the genereal symbols pg which can refer to any type of state below
or above the Fermi level. Wick’s theorem is implemented between the creation
and annihilation operators Fd and F, respectively. Using the simplify option,
one can lump together several Kronecker-d functions.

*

Exercise 9: Using sympy to compute matrix elements
We can expand the above Python code by defining one-body and two-body
operators using the following SymPy code
# This code sets up a two-body Hamiltonian for fermions

from sympy import symbols, latex, WildFunction, collect, Rational
from sympy.physics.secondquant import F, Fd, wicks, AntiSymmetricTensor, substitute_dummies, NO
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# setup hamiltonian

p,4q,r,s = symbols(’p q r s’,dummy=True)

f = AntiSymmetricTensor(’f’,(p,),(q,))

pr = NO((FA(p)*F(q)))

v = AntiSymmetricTensor(’v’,(p,q),(r,s))

pgsr = NO(Fd(p)*Fd(q)*F(s)*F(r))

Hamiltonian=f*pr + Rational(1l)/Rational (4)*v*pgsr
print "Hamiltonian defined as:", latex(Hamiltonian)

Here we have used the AntiSymmetric Tensor functionality, together with normal-
ordering defined by the NO function. Using the latex option, this program
produces the following output

1
12 {afan) - ot {alala,a.}
%

Exercise 10: Using sympy to compute matrix elements
We can now use this code to compute the matrix elements between two
two-body Slater determinants using Wick’s theorem.

from sympy import symbols, latex, WildFunction, collect, Rational, simplify
from sympy.physics.secondquant import F, Fd, wicks, AntiSymmetricTensor, substitute_dummies, NO,
# setup hamiltonian

p,9,r,s = symbols(’p q r s’,dummy=True)

f = AntiSymmetricTensor(’f’,(p,),(q,))

pr = NO((Fd(p)*F(q)))

v = AntiSymmetricTensor(’v’,(p,q),(r,s))

pasr = NO(Fd(p)*Fd(q)*F(s)*F(r))

Hamiltonian=f*pr + Rational(1l)/Rational(4)*v*pgsr

c,d = symbols(’c, d’,above_fermi=True)

a,b = symbols(’a, b’,above_fermi=True)

expression = wicks(F(b)*F(a)*Hamiltonian*Fd(c)*Fd(d) ,keep_only_fully_contracted=True, simplify_kr
expression = evaluate_deltas(expression)

expression = simplify(expression)

print "Hamiltonian defined as:", latex(expression)

The result is as expected,
6acf¢li) - 5adf£ - 5bcfg + §bdfg + v(clcll)'
*

Exercise 11: Using sympy to compute matrix elements
We can continue along these lines and define a normal-ordered Hamiltonian
with respect to a given reference state. In our first step we just define the
Hamiltonian
from sympy import symbols, latex, WildFunction, collect, Rational, simplify
from sympy.physics.secondquant import F, Fd, wicks, AntiSymmetricTensor, substitute_dummies, NO,

# setup hamiltonian
p,q,r,s = symbols(’p q r s’,dummy=True)
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f = AntiSymmetricTensor(’f’,(p,),(q,))

pr = Fd(p)*F(q)

v = AntiSymmetricTensor(’v’,(p,q),(r,s))

pasr = Fd(p)*Fd(q)*F(s)*F(r)

#define the Hamiltonian

Hamiltonian = f*pr + Rational(l)/Rational(4)*v#*pgsr
#define indices for states above and below the Fermi level
index_rule = {

’below’: ’kl1’,
’above’: ’cd’,
’general’: ’pqrs’

Hnormal = substitute_dummies(Hamiltonian,new_indices=True, pretty_indices=index_rule)
print "Hamiltonian defined as:", latex(Hnormal)

which results in

1
q,T 0T alal
paqap+4vqpasarapaq

%k

Exercise 12: Using sympy to compute matrix elements

In our next step we define the reference energy Fy and redefine the Hamilto-
nian by subtracting the reference energy and collecting the coefficients for all
normal-ordered products (given by the NO function).

from sympy import symbols, latex, WildFunction, collect, Rational, simplify
from sympy.physics.secondquant import F, Fd, wicks, AntiSymmetricTensor, substitute_dummies, NO,
# setup hamiltonian

p,q,r,s = symbols(’p q r s’,dummy=True)

f = AntiSymmetricTensor(’f’,(p,),(q,))

pr = Fd(p)*F(q)

v = AntiSymmetricTensor(’v’,(p,q),(r,s))

pasr = Fd(p)*Fd(q)*F (s)*F(r)

#define the Hamiltonian

Hamiltonian=f*pr + Rational(1l)/Rational(4)*v*pgsr

#define indices for states above and below the Fermi level

index_rule = {

’below’: ’kl1’,
’above’: ’cd’,
’general’: ’pqrs’

Hnormal = substitute_dummies(Hamiltonian,new_indices=True, pretty_indices=index_rule)
EO = wicks(Hnormal,keep_only_fully_contracted=True)

Hnormal = Hnormal-EO

w = WildFunction(’w’)

Hnormal = collect(Hnormal, NO(w))

Hnormal = evaluate_deltas(Hnormal)

print latex(Hnormal)

which gives us

) 1 .. o1
—fi+ flala, — 111; — Zv;; + Zv;;aialaqap,

again as expected, with the reference energy to be subtracted.
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Exercise 13: Using sympy to compute matrix elements
We can now go back to exercise 7 and define the Hamiltonian and the
second-quantized representation of a three-body Slater determinant.
from sympy import symbols, latex, WildFunction, collect, Rational, simplify
from sympy.physics.secondquant import F, Fd, wicks, AntiSymmetricTensor, substitute_dummies, NO,

# setup hamiltonian
p,q,r,s = symbols(’p q r s’,dummy=True)

v = AntiSymmetricTensor(’v’,(p,q),(r,s))

pasr = NO(Fd(p)*Fd(q)*F(s)*F(r))
Hamiltonian=Rational(1)/Rational (4)*v*pgsr

a,b,c,d,e,f = symbols(’a,b, c, d, e, f’,above_fermi=True)

expression = wicks(F(c)*F(b)*F(a)+*Hamiltonian*Fd(d)*Fd(e)*Fd(f) ,keep_only_fully_contracted=True,
expression = evaluate_deltas(expression)

expression = simplify(expression)
print latex(expression)

resulting in nine terms (as expected),

—0adVh — 80Vl + 8y vsy — 0bqvl§ — Obev}g + ObgvlG + 0eqvl} + Secvy — Sepvly

k

Exercise 14: Diagrammatic representation of Hartree-Fock equations
What is the diagrammatic representation of the HF equation?

—(an|u i) + Y [{onay[dlasas) — (arajlvlajai)] =0
j=1

(Represent (—u'?F") by the symbol — — —X .)
*

Exercise 15: Derivation of Hartree-Fock equations

Consider the ground state |®) of a bound many-particle system of fermions.
Assume that we remove one particle from the single-particle state A and that
our system ends in a new state |®,,). Define the energy needed to remove this
particle as

Ex =) [(®nlar|®)[*(Eo — En),
where Ey and E, are the ground state energies of the states |®) and |®,,),
respectively.
e Show that
E)\ = <®|ai [(1)\7H] |q)>7

where H is the Hamiltonian of this system.
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e If we assume that ® is the Hartree-Fock result, find the

relation between FE) and the single-particle energy e, for states A < F' and
A > F, with

ex = (ANt 4al\),
and

(Aalx) = Y (ABIoIAB).

BSF

We have assumed an antisymmetrized matrix element here. Discuss the result.
The Hamiltonian operator is defined as

N 1 N
H= E (alf|B)alas + 3 E (aﬁ\vhé)ala}jatgaw.
af aByé
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