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Section 1

Notation and Motivation
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Problem statement

We are looking at non-relativistic particles, so the solutions of the
A-body system, is given by the A-body Schrödinger equation,

ĤA|ΨA〉 = EA|ΨA〉
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Manybody wavefunction
The wavefunction of the manybody system can be decomposed
into a suitable manybody basis

|ΨA〉 =
∑
i

ci |Φi 〉.

For fermions, these are Slater-determinants

|Φi 〉 = |αi1αi2 . . . αiA〉

=

 A∏
j=1

a†ij

 |0〉,
Where a† is a second quantized operator satisfying

a†p|0〉 = |αp〉 ap|αq〉 =
(
a†p

)†
|αq〉 = δpq|0〉{

ap, a
†
q

}
= δpq {ap, aq} =

{
a†p, a

†
q

}
= 0
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Manybody wavefunction

In the x-representation the Slater-determinant is written

〈x|Φi 〉 =
1√
A

A!∑
n=1

(−1)PnP̂n

A∏
j=1

φi ,nj (xj),

where
φi ,k(xj) = 〈xj |αik 〉

are the solutions to a selected single particle problem

ĥφk(x) = εkφk(x).
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Manybody wavefunction

In the particle-hole formalism all quantities are expressed in
relation to the reference state

|Φ0〉 = |α1 . . . αA〉, α1, . . . , αA ≤ αF

The indices are partitioned according to their relation to the Fermi
level

i , j , . . . ≤ αF a, b, . . . > αF p, q, . . . : any,

and the second quantized operators now satisfy{
ai , a

†
j

}
= δij

{
aa, a

†
b

}
= δab

ai |Φ0〉 = |Φi 〉 a†a|Φ0〉 = |Φa〉

a†i |Φ0〉 = 0 aa|Φ0〉 = 0
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Manybody wavefunction

The manybody wavefunction can be expanded in a linear
combination of particle-hole excitations, which is complete in
agiven basis set

|Ψ〉 = |Φ0〉+
∑
ia

|Φa
i 〉+

1

4

∑
ijab

|Φab
ij 〉+ . . .+

1

(A!)2

∑
i1...iA
a1...aA

|Φa1...aA
i1...iA

〉

= |Φ0〉+
∑
ia

cai a
†
aai |Φ0〉+

1

4

∑
ijab

cabij a†aa
†
bajai |Φ0〉+ . . .+

1

(A!)2

∑
i1...iA
a1...aA

ca1...aAi1...iA
a†a1 . . . a

†
aA
aiA . . . ai1 |Φ0〉
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Manybody wavefunction

The particle-hole expansion of a manybody wavefunction is a linear
combination of all possible excitations of the reference
wavefuncton.

+
∑

+
∑

+ + +
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Manybody Hamiltonian

A general Hamiltonian contains up to A-body interactions

ĤA =
A∑

i=1

(
t̂i + ûi

)
+

A∑
i<j=1

v̂ij + + +
A∑

i1<···<iA=1

v̂i1,...,iA

= T̂kin + Û +
A∑

n=2

V̂n,

where T̂kin is the kinetic energy operator, Û is a generic onebody
potential and V̂n is an n-body potential.
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Manybody Hamiltonian

In second quantized form, a general n-body operator is written

V̂n =
1

(n!)2

∑
α1...αn
γ1...γn

〈α1 . . . αn|v̂n|γ1 . . . γn〉a†α1
. . . a†αn

aγn . . . aγ1 ,

where the matrix elements 〈α1 . . . αn|V̂n|γ1 . . . γn〉 are fully
anti-symmetric with respect to the interchange of indices and the
sum over αi and γi runs over all possible single particle states.
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Manybody Hamiltonian

We will truncate the Hamiltonian at the n = 2 level and use a
single particle basis diagonal in the onebody Hamiltonian, so the
full Hamiltonian will be written

Ĥ =
∑
pq

〈p|ĥ|q〉a†paq +
1

4

∑
pqrs

〈pq|v̂|rs〉a†pa†qasar
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Counting Slater determinants

Because of quantum mechanics, a particle can
exist in one of n single-particle levels.

Because nucleons are fermions, Pauli’s exclusion principle applies.
The number of possible ways to place k fermions in n levels is the
same as picking k unordered outcomes from n possibilities, which
is
(n
k

)
. The total number of Slater determinants (N) become

N =

(
n

np

)
×
(
n

nn

)
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Counting Slater determinants
Jupyter notebook:nslater

import matplotlib

import numpy as np

import matplotlib.pyplot as plt

from matplotlib import rc

rc("text", usetex=True)

def binomial(n, k):

uvector = np.array(range(k+1, n+1))

lvector = np.array(range(1, n-k+1))

return np.e**(np.log(uvector).sum() - np.log(lvector).sum())
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Counting Slater determinants
Jupyter notebook:nslater

he4 = (2, 2)

c12 = (6,6)

o16 = (8,8)

ca40 = (20,20)

nuclei = [he4, c12, o16, ca40]

labels = [r"${}^4$He", r"${}^{12}$C", r"${}^{16}$O",

r"${}^{40}$Ca"]
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Counting Slater determinants
Jupyter notebook:nslater

x = range(1, 201)

for label, nucleus in zip(labels, nuclei):

p = np.array([binomial(n, nucleus[0]) for n in x])

n = np.array([binomial(n, nucleus[1]) for n in x])

y = p*n

plt.plot(x, y, linewidth=2, label=label)

plt.xlabel("Number of single particle states", fontsize=18)

plt.ylabel("Number of Slater determinants", fontsize=18)

plt.legend(loc=2)

plt.tight_layout()

plt.yscale("log")

plt.savefig("slater_determinants.pdf")

plt.show()
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Curse of dimensionality
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Approximations schemes

• Truncate the single particle basis.

• Truncate the set of possible Slater determinants.
• Truncate by excitation level.
• Truncate by total energy level.
• Frozen core with valence space.
• Coupled cluster truncation.
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Section 2

Matrix representation
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Eigenvalue systems
Definition

We define an eigenvalue problem of a real symmetric matrix A as

Axj = λjxj ,

where A = (ai ,j) ∈ Rn×n, xj = (xi ,j) ∈ Rn is the j’th eigenvector of
A, and λj ∈ R is the j’th eigenvalue of A.
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Eigenvalue problem
Definition: EigenPair

import numpy as np

class EigenPair(object):

def __init__(this, eigenvalue, eigenvector):

this.eigenvalue = eigenvalue

this.eigenvector = np.array(eigenvector)

def __str__(this):

s = "Eigenvalue: %s\n" % this.eigenvalue

s += "Eigenvector: %s" % str(this.eigenvector)

return s

def is_eigenpair(this, matrix):

return np.allclose(np.matmul(matrix,this.eigenvector),

this.eigenvalue*this.eigenvector)
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Eigenvalue problem
Definition: EigenSolver

import numpy as np

from eigenpair import EigenPair

class EigenSolver(object):

def solve(this, matrix):

w, v = np.linalg.eig(matrix)

return [EigenPair(w[i], v[:,i]) for i in range(len(w))]

class EigensolverSymmetric(EigenSolver):

def solve(this, matrix):

w, v = np.linalg.eigh(matrix)

return [EigenPair(w[i], v[:,i]) for i in range(len(w))]
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Eigenvalue systems
Eigen decomposition

The eigenvectors of A form the columns of an orthogonal matrix Q
that satisfies

QQT = I,

where Q = (qi ,j) ∈ Rn×n, qi ,j = xi ,j and I is the identity matrix.

The eigenvalues of A form the entries of a diagonal matrix
D = (di ,j) ∈ Rn×n, dj ,j = λj .

The eigen decomposition of A is written

A = QDQT .
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Eigenvalue systems
Eigen decomposition

When A is not symmetric, but still have real eigenvalues and
eigenvectors, the eigenvectors are not orthogonal, but we can write
the eigendecomposition as

A = VDV−1,

where V = (vi ,j) ∈ Rn×n, vi ,j = xi ,j .
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Eigenvalue problem
Definition: EigenDecompostion

from eigensolver import EigenSolver, EigensolverSymmetric

import numpy as np

class EigenDecomposition(object):

def __init__(this):

this.solver = EigenSolver()

def decompose(this, matrix):

pairs = this.solver.solve(matrix)

shape = (len(pairs), len(pairs))

D = np.zeros(shape)

V = np.zeros(shape)

D[np.diag_indices_from(D)] = np.array([p.eigenvalue for

p in pairs])

for i in range(len(pairs)): V[:,i] = pairs[i].eigenvector

return D, V
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Eigenvalue problem
Definition: MatrixFromEigenDecomposition

import numpy as np

class MatrixFromEigenDecomposition(object):

def construct(this, D, V):

return np.matmul(V, np.matmul(D, np.linalg.inv(V)))

class MatrixFromEigenDecompositionSymmetric(object):

def construct(this, D, V):

return np.matmul(V, np.matmul(D, V.transpose()))
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Eigenvalue systems
Effective matrix

Let’s now define a matrix B = (bi ,j) ∈ Rm×m, where m < n. It
satisifies the eigenvalue equation

Byj = δjyj ,

where yj = (yi ,j) ∈ Rm is the j’th eigenvector of B, and δj ∈ R is
the j’th eigenvalue of B.

We don’t know the elements of B, but we want its eigenvalues to
be a subset of the eigenvalues of A.

What is the simplest matrix that satisfies this criteria?
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Eigenvalue systems
Effective matrix

The simplest matrix that has the eigenvalues δj = λkj , j ∈ [1,m] is

B = E,

where E = (ei ,j) ∈ Rm×m, ej ,j = δj = λkj .
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Eigenvalue systems
Effective matrix

The next step is to use the eigenvectors of A determine the
eigenvectors of B and then construct B through its eigen
decomposition.

Let the eigenvalues of B be δj = λkj , j ∈ [1,m] as before, and
define the eigenvectors as yj = (yi ,j), yi ,j = xik ,jk , k ∈ [1,m].
Construct the matrix Y from the eigenvectors of B, so that
Y = (yi ,j).

If X was an orthogonal matrix, is Y an orthogonal matrix?
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Eigenvalue systems
Effective matrix

We can now construct B through its eigen decomposition

B = Y−1EY.

If A was a symmetric matrix, is B symmetric?
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Eigenvalue problem
Definition: EigenProjection

class EigenProjection(object):

def project(this, pairs, mapping):

return [p.project(mapping) for p in pairs]

class EigenPair(object):

def project(this, mapping):

eigenvalue = this.eigenvalue

eigenvector = this.eigenvector[mapping]

return EigenPair(eigenvalue, eigenvector)
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Effective matrix
Symmetric orthogonalization

Define a similarity transformation of B as

C = S−1/2BS1/2,

where S = YTY has positive eigenvalues, Y is the matrix that
diagonalizes B defined before, and

S1/2 = QTD1/2Q.

We define the square root of a matrix by its eigen decomposition
and take the square root of the diagonal matrix of eigenvalues. Q
is orthogonal since S is symmetric.

ST = (YTY)T = YT (YT )T = YTY = S
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Effective matrix
Symmetric orthogonalization

This new matrix
C = S−1/2BS1/2,

is symmetric and its eigenvectors are the closest possible to the
original eigenvectors.

C is now a symmetric matrix that reproduces the original
eigenvalues that was selected from A with eigenvectors that are
the closest possible to the original eigenvectors in a reduced space.

This is exactly what we need to construct an effective shell-model
Hamiltonian.
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Summary

• Begin by selecting a subset of eigenvalues that will be the
eigenvalues of an effective matrix.

• Then, Construct a matrix from its eigen decompostion using
the selected eigenvalues and the projections of the selected
eigenvectors.

• Perform a symmetric orthogonaliztion procedure to get a
symmetric matrix that can be used in additional work.
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Section 3

Basic ideas
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Effective interactions: Basic ideas
Define a modelspace

Before we can construct the effective interaction as a matrix, we
must choose a basis or a model space for the effective interaction.
We will use the sd-shell as an example, consisting of the 0d5/2,
1s1/2, and 0d3/2 single-particle levels and with 16O as a core.
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Effective interactions: Basic ideas
A general effective interaction

Within a model space, the number of two-body states possible is
fixed, the same with the number of three-body states and all the
way up to how ever many particles the model space can
accomodate. The sd shell can accomodate 12 protons and 12
neutrons, so it’s possible to construct a 24-body state in this
model space.

Definition
Let’s define a general effective Hamiltonian H̃Ac+k as:

H̃Ac+k = Ṽ0 + Ṽ1 + Ṽ2 + . . .+ Ṽk ,

where Ṽk a k-body interaction and Ac is the number of particles in
the chosen core. We want this Hamiltonian to reproduce all energy
levels that are possible for a k-body state in the model space.
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Effective interactions: Basic ideas
An effective interaction for the core (k = 0)

There is only one state allowed for the k = 0 system and that is
the ground state of the core of the valence space. The effective
operator only has a scalar part,

H̃Ac = Ṽ0 = Ec ,

where Ec is the core or vacuum energy. For the sd-shell this is just
the binding energy of 16O.

Since it is a scalar, we can leave it out of the operator as long as
we remember that our energy levels are reported using the binding
energy of the core as the vacuum.
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Effective interactions: Basic ideas
A one-body effective interaction (k = 1)

For the k = 1 system, only the single-particle states defining the
model space are allowed. The effective operator is now written as

H̃Ac+1 = Ec + Ṽ1,

where we have kept the core energy just to make it clear that we
are defining an operator that reproduce the binding energy of the
core as well as the energy levels of the Ac + 1 system.

By knowing the total binding energy of the core and the single
particle states, we can define a one-body effective operator for a
model space. In fact, we could take these values from experimental
data, actual calculations, or even use them to tune our effective
interactions. In the literature, all these strategies have been and
are being pursued.
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Effective interactions: Basic ideas
A two-body effective interaction (k = 2)

The first non-trivial part of the effective interaction, is the
two-body operator. We will write

H̃Ac+2 = Ec + Ṽ1 + Ṽ2

for an effective interaction that reproduce the binding energy of
the core, the single particle energies of the Ac + 1 system and the
energy levels of all Ac + 2-body states allowed in our model space.

In theory, we could define this operator using only the Ac + 2-body
energy levels as input. These could be taken from experimental
data, from theory or they could be used as parameters in an
optimization framework. Again, you will find a use for all these
strategies in the literature.
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Effective interactions: Basic ideas
A general effective interaction

By solving the Schrödinger equation for a k-body system using an
effective interaction defined in a small model space, we can
reproduce the energy levels for all Ac + k-body states allowed in
the chosen model space.

Of course, the only thing we have done at this point is to create a
model that reproduce all of our input data, which is not very
useful. From a theoretical point of view, we would have to solve
the Schrödinger equation for the full Ac + k-body system by some
other method which defeates the purpose of this procedure.
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Effective interactions: Basic ideas
A truncated effective interaction

The real power of this method is that we can truncate the effective
interaction at the two-body level and solve Ac + k-body problems
as k-body problems in small model spaces with only knowledge of
relevant Ac , Ac + 1, and Ac + 2 solutions.
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Effective interactions: Basic ideas
Onebody operator in a two-body basis

To construct the two-body interaction, we need to subtract off the
one-body operator from the effective Hamiltonian. To do that we
need to find expressions for a one-body operator in a two-body
basis.

〈pq|Ṽ1|rs〉 = 〈pq|
∑
αβ

〈α|ṽ1|β〉a†αaβ|rs〉

=
∑
αβ

〈α|ṽ1|β〉〈0|aqapa†αaβa†ra†s |0〉

To get the analytic expression we could use the anticommutation
relations to normal order the operator string and find all the fully
contracted terms.
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Effective interactions: Basic ideas
Onebody operator in a two-body basis

Let’s instead use Wick’s theorem to find the fully contracted terms.

〈pq|Ṽ1|rs〉 =
∑
αβ

〈α|ṽ1|β〉〈0|(
aqapa

†
αaβa

†
ra
†
s + aqapa

†
αaβa

†
ra
†
s

+ aqapa
†
αaβa

†
ra
†
s + aqapa

†
αaβa

†
ra
†
s

)
|0〉
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Effective interactions: Basic ideas
Onebody operator in a two-body basis

And then find the delta functions and insert into the sum over α
and β

〈pq|Ṽ1|rs〉 =
∑
αβ

〈α|ṽ1|β〉
(
δsβδrpδαq−

δrβδspδαq − δsβδrqδαp + δrβδsqδαp

)
= 〈p|ṽ1|r〉δsq + 〈q|ṽ1|s〉δrp − 〈p|ṽ1|s〉δrq − 〈q|ṽ1|r〉δsp
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Section 4

A coupled representation
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Angular momentum of a two-body state
Notation

We label a state with total angular momentum j and projection m
as |jm〉 or 〈jm|. Similarily a two-body state is labelled by two
angular momentum quantum numbers j1 and j2 and their
projections m1 and m2 and write |j1m1j2m2〉 or 〈j1m1j2m2|.
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The Wigner–Eckart theorem

We define the reduced matrix element of the m’th component of a
spherical tensor T of rank j , by the Wigner-Eckart theorem.

〈j1m1|T̂j
m|j2m2〉 = 〈jmj2m2|j1m1〉〈j1‖T̂j‖j2〉

For the special case where j = m = 0, we find

〈j1m1|T̂0
0|j2m2〉 = δj1,j2δm1,m2〈j1‖T̂0‖j2〉,

since 〈00j2m2|j1m1〉 = δj1,j2δm1,m2 .
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Angular momentum coupled scheme
Definition: Two-body matrix element

〈pq; jpmpjqmq|Ĥ|rs; jrmr jsms〉 =
∑
jm

〈jpmpjqmq|jm〉〈jrmr jsms |jm〉×

〈pq; jpjq; j‖Ĥ‖rs; jr js ; j〉

〈pq; jpjq; j‖Ĥ‖rs; jr js ; j〉 =
1

2j + 1

∑
mpmq
mrmsm

〈jpmpjqmq|jm〉〈jrmr jsms |jm〉×

〈pq; jpmpjqmq|Ĥ|rs; jrmr jsms〉
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Angular momentum coupled basis
Uncoupled to coupled derivation

We start with the uncoupled matrix element

〈pq; jpmpjqmq|Ĥ|rs; jrmr jsms〉,

where ji and mi identifies the angular momentum and its
projection of the particle labelled with the index i , while the i
identifies all other quantum numbers relevant for the state. Ĥ is
the Hamiltonian and it is a scalar with respect to the total angular
momentum, since total angular momentum is conserved.
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Angular momentum coupled basis
Uncoupled to coupled derivation

We start by inserting the identity operator in the coupled basis
defined by

1 =
∑
j12m12

|j1j2; j12m12〉〈j1j2; j12m12|

The sums are over the total angular momentum and projection.
After insertion we have

〈pq; jpmpjqmq|Ĥ|rs; jrmr jsms〉 =
∑

jpqmpq

jrsmrs

〈jpmpjqmq|jpjq; jpqmpq〉

〈pq; jpjq; jpqmpq|Ĥ|rs; jr js ; jrsmrs〉〈jr js ; jrsmrs |jrmr jsms〉
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Angular momentum coupled basis
Uncoupled to coupled derivation

The last step is to use the Wigner-Eckart theorem to separate the
m-dependence from the Hamiltonian matrix element. We write

〈pq; jpmpjqmq|Ĥ|rs; jrmr jsms〉 =
∑

jpqmpq

jrsmrs

〈jpmpjqmq|jpqmpq〉

〈jrmr jsms |jrsmrs〉〈pq; jpjq; jpq‖Ĥ‖rs; jr js ; jrs〉δjpq ,jrs δmpq ,mrs ,

where

〈jpmpjqmq|jpqmpq〉 ≡ 〈jpmpjqmq|jpjq; jpqmpq〉

are Clebsh-Gordon coefficients and

〈jpmpjqmq|jpjq; jpqmpq〉 = 〈jpjq; jpqmpq|jpmpjqmq〉.
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Angular momentum coupled basis
Uncoupled to coupled derivation

Finally, we get

〈pq; jpmpjqmq|Ĥ|rs; jrmr jsms〉 =
∑
jm

〈jpmpjqmq|jm〉

〈jrmr jsms |jm〉〈pq; jpjq; j‖Ĥ‖rs; jr js ; j〉.
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Angular momentum coupled basis
Coupled to uncoupled derivation

Reversely, we start with the coupled matrix element

〈pq; jpjq; j‖Ĥ‖rs; jr js ; j〉,

where both the bra an ket state are coupled to total angular
momentum j .
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Angular momentum coupled basis
Coupled to uncoupled derivation

We now start with the Wigner-Eckart theorem in reverse. We write

〈pq; jpjq; j‖Ĥ‖rs; jr js ; j〉 =
1

2j + 1

∑
m

〈pq; jpjq; jm|Ĥ|rs; jr js ; jm〉

since the Hamiltonian is a scalar with respect to angular
momentum and the sum goes from m = −j to m = j ..
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Angular momentum coupled basis
Coupled to uncoupled derivation

Now we insert the identity map, this time in the uncoupled basis
defined by

1 =
∑
m1m2

|j1m1j2m2〉〈j1m1j2m2|

The sums are now over the individual angular momentum
projections that are missing from the coupled basis. After insertion
we have

〈pq; jpjq; j‖Ĥ‖rs; jr js ; j〉 =
1

2j + 1

∑
mpmq
mrmsm

〈jpjq; jm|jpmpjqmq〉

〈pq; jpmpjqmq|Ĥ|rs; jrmr jsms〉〈jrmr jsms |jr js ; jm〉

where we identify the transformation coefficients as Clebsh-Gordon
coefficients.
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Angular momentum coupled basis
Coupled to uncoupled derivation

Finally we have

〈pq; jpjq; j‖Ĥ‖rs; jr js ; j〉 =
1

2j + 1

∑
mpmq
mrmsm

〈jpmpjqmq|jm〉

〈jrmr jsms |jm〉〈pq; jpmpjqmq|Ĥ|rs; jrmr jsms〉.
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Angular momentum coupled basis
Consequences

Using the angular momentum coupled basis has a few major
consequences.

• The two-body basis no longer depends on the projection of
angular momentum. That means that the single particle basis
is reduced in size.

• The Hamiltonian is diagonal in total angular momentum and
independent of its projection. The result is that the storage
required for the Hamiltonian is also reduced.

• All equations and expressions have to be rewritten in the
coupled basis, which is a non-trivial task.

• Antisymmetry is hard(er) to express.
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Angular momentum coupled basis
Single particle basis

We can now define a single particle basis with the quantum
numbers n, l , j , and tz where

n is the number of nodes in the wavefunction,

l is the orbital momentum,

j is the total angular momentum (j = l + s),

tz is the isospin projection (tz = −1/2 for protons, tz = 1/2 for
neutrons)..
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Angular momentum coupled basis
Definition: SingleParticleState

class SingleParticleState(object):

def __init__(this, n, l, j, tz):

this.pw = PartialWave(n, l, j)

this.isospin =

SingleParticleState.isospin_projection[int(tz)]

def __str__(this):

return "%s: %s" % (this.get_isospin_symbol(),

str(this.pw))

def __eq__(this, other):

return this.pw == other.pw and this.isospin ==

other.isospin

def __neq__(this, other): return not this == other
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Angular momentum coupled basis
Definition: SingleParticleState

class SingleParticleState(object):

def get_isospin_symbol(this): return this.isospin

def get_parity(this): return this.pw.get_parity()

def get_isospin(this): return

this.isospin_projection_reverse[this.isospin]

def get_spin(this): return this.pw.get_spin()
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Angular momentum coupled basis
Definition: PartialWave

class PartialWave(object):

def __init__(this, n, l, j):

this.n = int(n); this.l = int(l); this.j = int(j)

def get_parity(this): return (-1)**this.l

def get_spin(this): return this.j

def __str__(this):

return "%d%s_{%d/2}" % \

( this.n, this.spectral_notation_reverse[this.l],

this.j)

def __eq__(this, other):

return this.n == other.n and this.l == other.l and

this.j == other.j

def __neq__(this, other): return not this == other
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Angular momentum coupled basis
Definition: SingleParticleBasis

The SingleParticleBasis class is just a container for all
SingleParticleState objects defining the model space.

class SingleParticleBasis(object):

def __init__(this, states):

this.states = states

def __str__(this):

s = ""

for state in this.states:

s += str(state) + "\n"

return s[:-1]
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Angular momentum coupled basis
Definition: SingleParticleBasisCreator

class SingleParticleBasisCreator(object):

sdshell_partial_waves = [

[ 0, 2, 5 ],

[ 1, 0, 1 ],

[ 0, 2, 3 ] ]

@staticmethod

def create_sd_shell(isospin=None):

return SingleParticleBasisCreator.create_shell(

SingleParticleBasisCreator.sdshell_partial_waves,

isospin)
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Angular momentum coupled basis
Definition: SingleParticleBasisCreator

class SingleParticleBasisCreator(object):

@staticmethod

def create_shell(partial_waves, isospin):

if isospin is None: isospin = [-1, 1 ]

else: isospin = [isospin]

states = []

for tz in isospin:

for pw in partial_waves:

n, l, j = pw

states.append(SingleParticleState(n, l, j, tz))

return SingleParticleBasis(states)
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Angular momentum coupled basis
Usage: SingleParticleBasisCreator

print SingleParticleBasisCreator.create_sd_shell()

> python single_particle_basis_creator.py

proton: 0d_{5/2}

proton: 1s_{1/2}

proton: 0d_{3/2}

neutron: 0d_{5/2}

neutron: 1s_{1/2}

neutron: 0d_{3/2}
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Angular momentum coupled basis
Channels

We can now exploit all the symmetries of the Hamiltonian and
label diagonal blocks by the conserved quantum numbers isospin
projection (tz), parity (π), and total angular momentum (j).

We will call a diagonal block with a specific set of quantum
numbers a channel.
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Angular momentum coupled basis
Definition: TwobodyChannel

from parity import Parity

class TwobodyChannel(object):

def __init__(this, spin, isospin, parity):

this.spin = int(spin)

this.isospin = int(isospin)

this.parity = Parity(parity)

def __str__(this):

return "Spin: %d, Isospin: %s, Parity: %s" % \

(this.spin, this.get_isospin_symbol(),

this.get_parity_symbol())
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Angular momentum coupled basis
Definition: TwobodyChannel

class TwobodyChannel(object):

def get_spin(this): return this.spin

def get_isospin(this): return this.isospin

def get_parity(this): return this.parity.get_parity()

def get_parity_symbol(this): return

this.parity.get_parity_symbol()

def get_isospin_symbol(this): return

this.isospin_conversion[this.isospin]
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Angular momentum coupled basis
Definition: TwobodyChannelCreator

class TwobodyChannelCreator(object):

@staticmethod

def create_channels(basis):

channels = []

parity_channels = TwobodyChannelCreator.find_parity(basis)

isospin_channels = TwobodyChannelCreator.find_isospin(basis)

spin_channels = TwobodyChannelCreator.find_spin(basis)

for parity in parity_channels:

for isospin in isospin_channels:

for spin in spin_channels:

channels.append(TwobodyChannel(spin, isospin, parity))

return channels
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Angular momentum coupled basis
Usage: TwobodyChannelCreator

from single_particle_basis_creator import

SingleParticleBasisCreator

sd = SingleParticleBasisCreator.create_sd_shell()

channels = TwobodyChannelCreator.create_channels(sd)

for c in channels: print c
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Angular momentum coupled basis
Usage: TwobodyChannelCreator

> python twobody_channel_creator.py

Spin: 0, Isospin: pp, Parity: +

Spin: 1, Isospin: pp, Parity: +

Spin: 2, Isospin: pp, Parity: +

Spin: 3, Isospin: pp, Parity: +

Spin: 4, Isospin: pp, Parity: +

Spin: 5, Isospin: pp, Parity: +

Spin: 0, Isospin: pn, Parity: +

Spin: 1, Isospin: pn, Parity: +

Spin: 2, Isospin: pn, Parity: +

Spin: 3, Isospin: pn, Parity: +

Spin: 4, Isospin: pn, Parity: +

Spin: 5, Isospin: pn, Parity: +

Spin: 0, Isospin: nn, Parity: +

Spin: 1, Isospin: nn, Parity: +

Spin: 2, Isospin: nn, Parity: +

Spin: 3, Isospin: nn, Parity: +

Spin: 4, Isospin: nn, Parity: +

Spin: 5, Isospin: nn, Parity: +
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Angular momentum coupled basis
Definition: TwobodyState

from single_particle_state import SingleParticleState

from parity import Parity

class TwobodyState(object):

def __init__(this, a, b):

if type(a) is SingleParticleState and type(b) is

SingleParticleState:

this.a = a

this.b = b

else: this.a = None; this.b = None

def is_identical(this): return this.a == this.b

def __str__(this):

return "a: %s\nb: %s\n%s" %(str(this.a),

str(this.b),this.is_identical())
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Angular momentum coupled basis
Definition: TwobodyState

class TwobodyState(object):

def get_parity_symbol(this):

p = Parity(this.a.get_parity()*this.b.get_parity())

return p.get_parity_symbol()

def get_parity(this): return

Parity(this.a.get_parity()*this.b.get_parity()).get_parity()

def get_isospin(this): return (this.a.get_isospin() +

this.b.get_isospin())/2

def get_minimum_spin(this): return abs(this.a.get_spin() -

this.b.get_spin())/2

def get_maximum_spin(this): return (this.a.get_spin() +

this.b.get_spin())/2
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Angular momentum coupled basis
Definition: TwobodyBasis

from twobody_channel import TwobodyChannel

class TwobodyBasis(object):

def __init__(this, channel, states):

if type(channel) is TwobodyChannel: this.channel =

channel

this.states = states

def __str__(this):

s = str(this.channel) +"\n"

for state in this.states:

s += str(state) + "\n"

return s[:-1]

def get_basis_size(this): return len(this.states)
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Angular momentum coupled basis
Definition: TwobodyBasisCreator

class TwobodyBasisCreator(object):

def __init__(this, spbasis):

this.spbasis = spbasis
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Angular momentum coupled basis
Definition: TwobodyBasisCreator

class TwobodyBasisCreator(object):

def get_basis_for_channel(this, ch):

if type(channel) is not TwobodyChannel: return []

states = []

left = this.spbasis.states

right = this.spbasis.states

for a, idxa in zip(left, range(len(left))):

for b, idxb in zip(right, range(len(right))):

if idxb < idxa: continue

s = TwobodyState(a, b)

if s.get_parity() != ch.get_parity(): continue

if s.get_isospin() != ch.get_isospin(): continue

if ch.get_spin() < s.get_minimum_spin(): continue

if ch.get_spin() > s.get_maximum_spin(): continue

if a==b and ch.get_spin()%2 != 0: continue

states.append(s)

return TwobodyBasis(ch, states)
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Angular momentum coupled basis
Usage: TwobodyBasisCreator

from twobody_channel_creator import TwobodyChannelCreator

from single_particle_basis_creator import

SingleParticleBasisCreator as creator

from itertools import compress

spbasis = creator.create_sd_shell()

twobody_basis = TwobodyBasisCreator(spbasis)

channels = TwobodyChannelCreator.create_channels(spbasis)

print "Proton proton channels"

for ch in compress(channels, [ch.get_isospin() == -1 for ch

in channels]):

print twobody_basis.get_basis_for_channel(ch) + "\n"
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Angular momentum coupled basis
Usage: TwobodyBasisCreator

> python twobody_basis_creator.py

Proton proton channels

Spin: 0, Isospin: pp, Parity: +

Number of states: 3

a: proton: 0d_{5/2}

b: proton: 0d_{5/2}

Identical: True

a: proton: 1s_{1/2}

b: proton: 1s_{1/2}

Identical: True

a: proton: 0d_{3/2}

b: proton: 0d_{3/2}

Identical: True

Spin: 1, Isospin: pp, Parity: +

Number of states: 2

a: proton: 0d_{5/2}

b: proton: 0d_{3/2}

Identical: False

a: proton: 1s_{1/2}

b: proton: 0d_{3/2}

Identical: False
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Section 5

Example
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Angular momentum coupled basis
Example: sd-shell

The sd-shell is built from three partial waves for protons and three
for neutrons, namely the 0d5/2, 1s1/2 and 0d3/2 partial waves.

The two-body basis is split into three isospin projection channels,
namely the proton-proton (tz = −1), proton-neutron (tz = 0), and
neutron-neutron (tz = 1) channels. In addition, only positive parity
states are possible with this single particle basis.

Finally, we can create two-body states with total angular
momentum j ∈ [0, 5], with slight differences between the tz = ±1
channels and the tz = 0 channel because of the selection rule for
identical particles.
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Angular momentum coupled basis
Example: sd-shell

In this valence space we can create the following two-body states
for identical particles:

• 0+: (0d5/2, 0d5/2), (1s1/2, 1s1/2), and (0d3/2, 0d3/2).

• 1+: (0d5/2, 0d3/2) and (1s1/2, 0d3/2)

• 2+: (0d5/2, 0d5/2), (0d3/2, 0d3/2), (0d5/2, 0d3/2),
(1s1/2, 0d3/2), and (0d5/2, 1s1/2)

• 3+: (0d5/2, 1s1/2) and (0d5/2, 0d3/2)

• 4+: (0d5/2, 0d5/2) and (0d5/2, 0d3/2)
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Angular momentum coupled basis
Example: sd-shell

Additional two-body states we can create from proton-neutron
combinations (proton state always listed first):

• 0+:

• 1+: (0d5/2, 0d5/2), (1s1/2, 1s1/2), (0d3/2, 0d3/2),
(0d3/2, 0d5/2), and (0d3/2, 1s1/2)

• 2+: (0d3/2, 0d5/2), (0d3/2, 1s1/2), and (1s1/2, 0d5/2)

• 3+: (0d5/2, 0d5/2), (0d3/2, 0d3/2), (0d3/2, 0d5/2), and
(1s1/2, 0d5/2)

• 4+: (0d3/2, 0d5/2)

• 5+: (0d5/2, 0d5/2)

See matrix-block.py for how to calculate the two-body basis for
different channels in the sd-shell.


