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Why Hartree-Fock?
Hartree-Fock (HF) theory is an algorithm for finding an approximative ex-

pression for the ground state of a given Hamiltonian. The basic ingredients
are

• Define a single-particle basis {ψα} so that

ĥHFψα = εαψα

with the Hartree-Fock Hamiltonian defined as

ĥHF = t̂+ ûext + ûHF

• The term ûHF is a single-particle potential to be determined by the HF
algorithm.

• The HF algorithm means to choose ûHF in order to have

〈Ĥ〉 = EHF = 〈Φ0|Ĥ|Φ0〉

that is to find a local minimum with a Slater determinant Φ0 being the ansatz
for the ground state.

• The variational principle ensures that EHF ≥ E0, with E0 the exact ground
state energy.

Why Hartree-Fock?
We will show that the Hartree-Fock Hamiltonian ĥHF equals our definition of

the operator f̂ discussed in connection with the new definition of the normal-
ordered Hamiltonian (see later lectures), that is we have, for a specific matrix
element

〈p|ĥHF|q〉 = 〈p|f̂ |q〉 = 〈p|t̂+ ûext|q〉+
∑
i≤F

〈pi|V̂ |qi〉AS ,
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meaning that
〈p|ûHF|q〉 =

∑
i≤F

〈pi|V̂ |qi〉AS .

The so-called Hartree-Fock potential ûHF brings an explicit medium dependence
due to the summation over all single-particle states below the Fermi level F . It
brings also in an explicit dependence on the two-body interaction (in nuclear
physics we can also have complicated three- or higher-body forces). The two-
body interaction, with its contribution from the other bystanding fermions,
creates an effective mean field in which a given fermion moves, in addition to the
external potential ûext which confines the motion of the fermion. For systems like
nuclei, there is no external confining potential. Nuclei are examples of self-bound
systems, where the binding arises due to the intrinsic nature of the strong force.
For nuclear systems thus, there would be no external one-body potential in the
Hartree-Fock Hamiltonian.

Definitions and notations
Before we proceed we need some definitions. We will assume that the inter-

acting part of the Hamiltonian can be approximated by a two-body interaction.
This means that our Hamiltonian is written as the sum of some onebody part
and a twobody part

Ĥ = Ĥ0 + ĤI =
A∑
i=1

ĥ0(xi) +
A∑
i<j

v̂(rij), (1)

with

H0 =
A∑
i=1

ĥ0(xi). (2)

The onebody part uext(xi) is normally approximated by a harmonic oscillator
or Woods-Saxon potential or for electronic systems the Coulomb interaction an
electron feels from the nucleus. However, other potentials are fully possible, such
as one derived from the self-consistent solution of the Hartree-Fock equations to
be discussed here.

Definitions and notations
Our Hamiltonian is invariant under the permutation (interchange) of two

particles. Since we deal with fermions however, the total wave function is
antisymmetric. Let P̂ be an operator which interchanges two particles. Due to
the symmetries we have ascribed to our Hamiltonian, this operator commutes
with the total Hamiltonian,

[Ĥ, P̂ ] = 0,
meaning that Ψλ(x1, x2, . . . , xA) is an eigenfunction of P̂ as well, that is

P̂ijΨλ(x1, x2, . . . , xi, . . . , xj , . . . , xA) = βΨλ(x1, x2, . . . , xi, . . . , xj , . . . , xA),
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where β is the eigenvalue of P̂ . We have introduced the suffix ij in order to
indicate that we permute particles i and j. The Pauli principle tells us that the
total wave function for a system of fermions has to be antisymmetric, resulting
in the eigenvalue β = −1.

Definitions and notations
In our case we assume that we can approximate the exact eigenfunction with

a Slater determinant

Φ(x1, x2, . . . , xA, α, β, . . . , σ) = 1√
A!

∣∣∣∣∣∣∣∣∣∣
ψα(x1) ψα(x2) . . . . . . ψα(xA)
ψβ(x1) ψβ(x2) . . . . . . ψβ(xA)
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

ψσ(x1) ψσ(x2) . . . . . . ψσ(xA)

∣∣∣∣∣∣∣∣∣∣
,

(3)
where xi stand for the coordinates and spin values of a particle i and α, β, . . . , γ
are quantum numbers needed to describe remaining quantum numbers.

Definitions and notations
The single-particle function ψα(xi) are eigenfunctions of the onebody Hamil-

tonian hi, that is
ĥ0(xi) = t̂(xi) + ûext(xi),

with eigenvalues

ĥ0(xi)ψα(xi) =
(
t̂(xi) + ûext(xi)

)
ψα(xi) = εαψα(xi).

The energies εα are the so-called non-interacting single-particle energies, or
unperturbed energies. The total energy is in this case the sum over all single-
particle energies, if no two-body or more complicated many-body interactions
are present.

Definitions and notations
Let us denote the ground state energy by E0. According to the variational

principle we have
E0 ≤ E[Φ] =

∫
Φ∗ĤΦdτ

where Φ is a trial function which we assume to be normalized∫
Φ∗Φdτ = 1,

where we have used the shorthand dτ = dx1dr2 . . . drA.

3



Brief reminder on some linear algebra properties
Before we proceed with a more compact representation of a Slater determinant,

we would like to repeat some linear algebra properties which will be useful for
our derivations of the energy as function of a Slater determinant, Hartree-Fock
theory and later the nuclear shell model.

The inverse of a matrix is defined by

A−1 ·A = I

A unitary matrix A is one whose inverse is its adjoint

A−1 = A†

A real unitary matrix is called orthogonal and its inverse is equal to its transpose.
A hermitian matrix is its own self-adjoint, that is

A = A†.

Basic Matrix Features
Matrix Properties Reminder.

Relations Name matrix elements
A = AT symmetric aij = aji

A =
(
AT
)−1 real orthogonal

∑
k aikajk =

∑
k akiakj = δij

A = A∗ real matrix aij = a∗ij
A = A† hermitian aij = a∗ji

A =
(
A†
)−1 unitary

∑
k aika

∗
jk =

∑
k a
∗
kiakj = δij

Basic Matrix Features
Since we will deal with Fermions (identical and indistinguishable particles) we

will form an ansatz for a given state in terms of so-called Slater determinants
determined by a chosen basis of single-particle functions.

For a given n× n matrix A we can write its determinant

det(A) = |A| =

∣∣∣∣∣∣∣∣∣∣
a11 a12 . . . . . . a1n
a21 a22 . . . . . . a2n
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
an1 an2 . . . . . . ann

∣∣∣∣∣∣∣∣∣∣
,

in a more compact form as

|A| =
n!∑
i=1

(−1)pi P̂ia11a22 . . . ann,
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where P̂i is a permutation operator which permutes the column indices 1, 2, 3, . . . , n
and the sum runs over all n! permutations. The quantity pi represents the num-
ber of transpositions of column indices that are needed in order to bring a given
permutation back to its initial ordering, in our case given by a11a22 . . . ann here.

Basic Matrix Features, simple 2× 2 determinant
A simple 2× 2 determinant illustrates this. We have

det(A) =
∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = (−1)0a11a22 + (−1)1a12a21,

where in the last term we have interchanged the column indices 1 and 2. The
natural ordering we have chosen is a11a22.

Definitions and notations
With the above we can rewrite our Slater determinant in a more compact

form. In the Hartree-Fock method the trial function is the Slater determinant of
Eq. (3) which can be rewritten as

Φ(x1, x2, . . . , xA, α, β, . . . , ν) = 1√
A!

∑
P

(−)P P̂ψα(x1)ψβ(x2) . . . ψν(xA) =
√
A!ÂΦH ,

where we have introduced the antisymmetrization operator Â defined by the
summation over all possible permutations of two particles.

Definitions and notations
It is defined as

Â = 1
A!
∑
p

(−)pP̂ , (4)

with p standing for the number of permutations. We have introduced for later
use the so-called Hartree-function, defined by the simple product of all possible
single-particle functions

ΦH(x1, x2, . . . , xA, α, β, . . . , ν) = ψα(x1)ψβ(x2) . . . ψν(xA).

Definitions and notations
Both Ĥ0 and ĤI are invariant under all possible permutations of any two

particles and hence commute with Â

[H0, Â] = [HI , Â] = 0. (5)

Furthermore, Â satisfies
Â2 = Â, (6)

since every permutation of the Slater determinant reproduces it.
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Definitions and notations
The expectation value of Ĥ0∫

Φ∗Ĥ0Φdτ = A!
∫

Φ∗HÂĤ0ÂΦHdτ

is readily reduced to ∫
Φ∗Ĥ0Φdτ = A!

∫
Φ∗HĤ0ÂΦHdτ,

where we have used Eqs. (5) and (6). The next step is to replace the anti-
symmetrization operator by its definition and to replace Ĥ0 with the sum of
one-body operators∫

Φ∗Ĥ0Φdτ =
A∑
i=1

∑
p

(−)p
∫

Φ∗H ĥ0P̂ΦHdτ.

Definitions and notations
The integral vanishes if two or more particles are permuted in only one of the

Hartree-functions ΦH because the individual single-particle wave functions are
orthogonal. We obtain then∫

Φ∗Ĥ0Φdτ =
A∑
i=1

∫
Φ∗H ĥ0ΦHdτ.

Orthogonality of the single-particle functions allows us to further simplify the
integral, and we arrive at the following expression for the expectation values of
the sum of one-body Hamiltonians∫

Φ∗Ĥ0Φdτ =
A∑
µ=1

∫
ψ∗µ(x)ĥ0ψµ(x)dx. (7)

Definitions and notations
We introduce the following shorthand for the above integral

〈µ|ĥ0|µ〉 =
∫
ψ∗µ(x)ĥ0ψµ(x)dx,

and rewrite Eq. (7) as ∫
Φ∗Ĥ0Φdτ =

A∑
µ=1
〈µ|ĥ0|µ〉. (8)
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Definitions and notations
The expectation value of the two-body part of the Hamiltonian is obtained in

a similar manner. We have∫
Φ∗ĤIΦdτ = A!

∫
Φ∗HÂĤIÂΦHdτ,

which reduces to∫
Φ∗ĤIΦdτ =

A∑
i≤j=1

∑
p

(−)p
∫

Φ∗H v̂(rij)P̂ΦHdτ,

by following the same arguments as for the one-body Hamiltonian.

Definitions and notations
Because of the dependence on the inter-particle distance rij , permutations of

any two particles no longer vanish, and we get∫
Φ∗ĤIΦdτ =

A∑
i<j=1

∫
Φ∗H v̂(rij)(1− Pij)ΦHdτ.

where Pij is the permutation operator that interchanges particle i and particle
j. Again we use the assumption that the single-particle wave functions are
orthogonal.

Definitions and notations
We obtain∫

Φ∗ĤIΦdτ = 1
2

A∑
µ=1

A∑
ν=1

[∫
ψ∗µ(xi)ψ∗ν(xj)v̂(rij)ψµ(xi)ψν(xj)dxidxj (9)

−
∫
ψ∗µ(xi)ψ∗ν(xj)v̂(rij)ψν(xi)ψµ(xj)dxidxj

]
. (10)

The first term is the so-called direct term. It gives rise to the Hartree term in
Hartree-Fock theory, while the second is due to the Pauli principle and is called
the exchange term and gives rise to the Fock term in the Hartree-Fock equations.
The factor 1/2 is introduced because we now run over all pairs twice.

Definitions and notations
The last equation allows us to introduce some further definitions. The single-

particle wave functions ψµ(x), defined by the quantum numbers µ and x are
defined as the overlap

ψµ(x) = 〈x|µ〉.
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Definitions and notations
We introduce the following shorthands for the above two integrals

〈µν|v̂|µν〉 =
∫
ψ∗µ(xi)ψ∗ν(xj)v̂(rij)ψµ(xi)ψν(xj)dxidxj ,

and
〈µν|v̂|νµ〉 =

∫
ψ∗µ(xi)ψ∗ν(xj)v̂(rij)ψν(xi)ψµ(xj)dxidxj .

Compact functional
Our functional can then be written in a compact version as

E[Φ] =
A∑
µ

〈µ|ĥ0|µ〉+ 1
2

A∑
µν

[〈µν|v̂|µν〉 − 〈νµ|v̂|µν〉] .

Properties of the interaction elements
Since the interaction is invariant under the interchange of two particles it

means for example that we have

〈µν|v̂|µν〉 = 〈νµ|v̂|νµ〉,

or in the more general case

〈µν|v̂|στ〉 = 〈νµ|v̂|τσ〉.

Redefining the matrix elements
The direct and exchange matrix elements can be brought together if we define

the antisymmetrized matrix element

〈µν|v̂|µν〉AS = 〈µν|v̂|µν〉 − 〈µν|v̂|νµ〉,

or for a general matrix element

〈µν|v̂|στ〉AS = 〈µν|v̂|στ〉 − 〈µν|v̂|τσ〉.

It has the symmetry property

〈µν|v̂|στ〉AS = −〈µν|v̂|τσ〉AS = −〈νµ|v̂|στ〉AS .

The antisymmetric matrix element is also hermitian, implying

〈µν|v̂|στ〉AS = 〈στ |v̂|µν〉AS .
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Rewriting the energy functional
With these notations we rewrite the energy functional as∫

Φ∗ĤIΦdτ = 1
2

A∑
µ=1

A∑
ν=1
〈µν|v̂|µν〉AS . (11)

Adding the contribution from the one-body operator Ĥ0 to (11) we obtain
the energy functional

E[Φ] =
A∑
µ=1
〈µ|h|µ〉+ 1

2

A∑
µ=1

A∑
ν=1
〈µν|v̂|µν〉AS . (12)

In our coordinate space derivations below we will spell out the Hartree-Fock
equations in terms of their integrals.

Reminder on Variational Calculus and Lagrangian Multi-
pliers

The calculus of variations involves problems where the quantity to be minimized
or maximized is an integral.

In the general case we have an integral of the type

E[Φ] =
∫ b

a

f(Φ(x), ∂Φ
∂x

, x)dx,

where E is the quantity which is sought minimized or maximized. The problem
is that although f is a function of the variables Φ, ∂Φ/∂x and x, the exact
dependence of Φ on x is not known. This means again that even though the
integral has fixed limits a and b, the path of integration is not known. In our
case the unknown quantities are the single-particle wave functions and we wish
to choose an integration path which makes the functional E[Φ] stationary. This
means that we want to find minima, or maxima or saddle points. In physics
we search normally for minima. Our task is therefore to find the minimum of
E[Φ] so that its variation δE is zero subject to specific constraints. In our case
the constraints appear as the integral which expresses the orthogonality of the
single-particle wave functions. The constraints can be treated via the technique
of Lagrangian multipliers

Variational Calculus and Lagrangian Multipliers, simple ex-
ample
Let us specialize to the expectation value of the energy for one particle in

three-dimensions. This expectation value reads

E =
∫
dxdydzψ∗(x, y, z)Ĥψ(x, y, z),
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with the constraint ∫
dxdydzψ∗(x, y, z)ψ(x, y, z) = 1,

and a Hamiltonian
Ĥ = −1

2∇
2 + V (x, y, z).

We will, for the sake of notational convenience, skip the variables x, y, z below,
and write for example V (x, y, z) = V .

Manipulating terms
The integral involving the kinetic energy can be written as, with the function

ψ vanishing strongly for large values of x, y, z (given here by the limits a and b),∫ b

a

dxdydzψ∗
(
−1

2∇
2
)
ψdxdydz = ψ∗∇ψ|ba +

∫ b

a

dxdydz
1
2∇ψ

∗∇ψ.

We will drop the limits a and b in the remaining discussion. Inserting this
expression into the expectation value for the energy and taking the variational
minimum we obtain

δE = δ

{∫
dxdydz

(
1
2∇ψ

∗∇ψ + V ψ∗ψ

)}
= 0.

Adding the Lagrangian multiplier
The constraint appears in integral form as∫

dxdydzψ∗ψ = constant,

and multiplying with a Lagrangian multiplier λ and taking the variational
minimum we obtain the final variational equation

δ

{∫
dxdydz

(
1
2∇ψ

∗∇ψ + V ψ∗ψ − λψ∗ψ
)}

= 0.

We introduce the function f

f = 1
2∇ψ

∗∇ψ + V ψ∗ψ − λψ∗ψ = 1
2(ψ∗xψx + ψ∗yψy + ψ∗zψz) + V ψ∗ψ − λψ∗ψ,

where we have skipped the dependence on x, y, z and introduced the shorthand
ψx, ψy and ψz for the various derivatives.
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And with the Euler-Lagrange equations we get
For ψ∗ the Euler-Lagrange equations yield

∂f

∂ψ∗
− ∂

∂x

∂f

∂ψ∗x
− ∂

∂y

∂f

∂ψ∗y
− ∂

∂z

∂f

∂ψ∗z
= 0,

which results in
−1

2(ψxx + ψyy + ψzz) + V ψ = λψ.

We can then identify the Lagrangian multiplier as the energy of the system.
The last equation is nothing but the standard Schroedinger equation and the
variational approach discussed here provides a powerful method for obtaining
approximate solutions of the wave function.

Hartree-Fock by varying the coefficients of a wave function
expansion
In deriving the Hartree-Fock equations, we will expand the single-particle

functions in a known basis and vary the coefficients, that is, the new single-
particle wave function is written as a linear expansion in terms of a fixed chosen
orthogonal basis (for example the well-known harmonic oscillator functions or
the hydrogen-like functions etc). We define our new Hartree-Fock single-particle
basis by performing a unitary transformation on our previous basis (labelled
with greek indices) as

ψHFp =
∑
λ

Cpλφλ. (13)

In this case we vary the coefficients Cpλ. If the basis has infinitely many solutions,
we need to truncate the above sum. We assume that the basis φλ is orthogonal.
A unitary transformation keeps the orthogonality, as discussed in exercise 1
below.

More on linear algebra
In the previous slide we stated that a unitary transformation keeps the

orthogonality, as discussed in exercise 1 below. To see this consider first a basis
of vectors vi,

vi =


vi1
. . .
. . .
vin


We assume that the basis is orthogonal, that is

vTj vi = δij .

An orthogonal or unitary transformation

wi = Uvi,
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preserves the dot product and orthogonality since
wT
j wi = (Uvj)TUvi = vTj UTUvi = vTj vi = δij .

Coefficients of a wave function expansion
This means that if the coefficients Cpλ belong to a unitary or orthogonal

trasformation (using the Dirac bra-ket notation)

|p〉 =
∑
λ

Cpλ|λ〉,

orthogonality is preserved, that is 〈α|β〉 = δαβ and 〈p|q〉 = δpq.
This propertry is extremely useful when we build up a basis of many-body

Stater determinant based states.
Note also that although a basis |α〉 contains an infinity of states,

for practical calculations we have always to make some truncations.

More Basic Matrix Features, simple 2× 2 determinant, use-
ful property of determinants
Before we develop the Hartree-Fock equations, there is another very useful

property of determinants that we will use both in connection with Hartree-Fock
calculations and later shell-model calculations.

Consider the following determinant∣∣∣∣ α1b11 + α2sb12 a12
α1b21 + α2b22 a22

∣∣∣∣ = α1

∣∣∣∣ b11 a12
b21 a22

∣∣∣∣+ α2

∣∣∣∣ b12 a12
b22 a22

∣∣∣∣
More Basic Matrix Features, n× n determinant

We can generalize this to an n× n matrix and have∣∣∣∣∣∣∣∣∣∣
a11 a12 . . .

∑n
k=1 ckb1k . . . a1n

a21 a22 . . .
∑n
k=1 ckb2k . . . a2n

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
an1 an2 . . .

∑n
k=1 ckbnk . . . ann

∣∣∣∣∣∣∣∣∣∣
=

n∑
k=1

ck

∣∣∣∣∣∣∣∣∣∣
a11 a12 . . . b1k . . . a1n
a21 a22 . . . b2k . . . a2n
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
an1 an2 . . . bnk . . . ann

∣∣∣∣∣∣∣∣∣∣
.

This is a property we will use in our Hartree-Fock discussions.

More Basic Matrix Features, a general n× n determinant
We can generalize the previous results, now with all elements aij being given

as functions of linear combinations of various coefficients c and elements bij ,∣∣∣∣∣∣∣∣∣∣

∑n
k=1 b1kck1

∑n
k=1 b1kck2 . . .

∑n
k=1 b1kckj . . .

∑n
k=1 b1kckn∑n

k=1 b2kck1
∑n
k=1 b2kck2 . . .

∑n
k=1 b2kckj . . .

∑n
k=1 b2kckn

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .∑n
k=1 bnkck1

∑n
k=1 bnkck2 . . .

∑n
k=1 bnkckj . . .

∑n
k=1 bnkckn

∣∣∣∣∣∣∣∣∣∣
= det(C)det(B),
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where det(C) and det(B) are the determinants of n× n matrices with elements
cij and bij respectively. This is a property we will use in our Hartree-Fock
discussions. Convince yourself about the correctness of the above expression by
setting n = 2.

A general Slater determinant
With our definition of the new basis in terms of an orthogonal basis we have

ψp(x) =
∑
λ

Cpλφλ(x).

If the coefficients Cpλ belong to an orthogonal or unitary matrix, the new basis
is also orthogonal. Our Slater determinant in the new basis ψp(x) is written as

1√
A!

∣∣∣∣∣∣∣∣∣∣
ψp(x1) ψp(x2) . . . . . . ψp(xA)
ψq(x1) ψq(x2) . . . . . . ψq(xA)
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

ψt(x1) ψt(x2) . . . . . . ψt(xA)

∣∣∣∣∣∣∣∣∣∣
= 1√

A!

∣∣∣∣∣∣∣∣∣∣

∑
λ Cpλφλ(x1)

∑
λ Cpλφλ(x2) . . . . . .

∑
λ Cpλφλ(xA)∑

λ Cqλφλ(x1)
∑
λ Cqλφλ(x2) . . . . . .

∑
λ Cqλφλ(xA)

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .∑
λ Ctλφλ(x1)

∑
λ Ctλφλ(x2) . . . . . .

∑
λ Ctλφλ(xA)

∣∣∣∣∣∣∣∣∣∣
,

which is nothing but det(C)det(Φ), with det(Φ) being the determinant given by
the basis functions φλ(x).

Hartree-Fock by varying the coefficients of a wave function
expansion
It is normal to choose a single-particle basis defined as the eigenfunctions of

parts of the full Hamiltonian. The typical situation consists of the solutions of
the one-body part of the Hamiltonian, that is we have

ĥ0φλ = ελφλ.

The single-particle wave functions φλ(r), defined by the quantum numbers λ
and r are defined as the overlap

φλ(r) = 〈r|λ〉.

Hartree-Fock by varying the coefficients of a wave function
expansion

In our discussions hereafter we will use our definitions of single-particle states
above and below the Fermi (F ) level given by the labels ijkl · · · ≤ F for so-called
single-hole states and abcd · · · > F for so-called particle states. For general
single-particle states we employ the labels pqrs . . . .
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Hartree-Fock by varying the coefficients of a wave function
expansion
In Eq. (12), restated here

E[Φ] =
A∑
µ=1
〈µ|h|µ〉+ 1

2

A∑
µ=1

A∑
ν=1
〈µν|v̂|µν〉AS ,

we found the expression for the energy functional in terms of the basis function
φλ(r). We then varied the above energy functional with respect to the basis
functions |µ〉. Now we are interested in defining a new basis defined in terms of
a chosen basis as defined in Eq. (13). We can then rewrite the energy functional
as

E[ΦHF ] =
A∑
i=1
〈i|h|i〉+ 1

2

A∑
ij=1
〈ij|v̂|ij〉AS , (14)

where ΦHF is the new Slater determinant defined by the new basis of Eq. (13).

Hartree-Fock by varying the coefficients of a wave function
expansion
Using Eq. (13) we can rewrite Eq. (14) as

E[Ψ] =
A∑
i=1

∑
αβ

C∗iαCiβ〈α|h|β〉+ 1
2

A∑
ij=1

∑
αβγδ

C∗iαC
∗
jβCiγCjδ〈αβ|v̂|γδ〉AS . (15)

Hartree-Fock by varying the coefficients of a wave function
expansion
We wish now to minimize the above functional. We introduce again a set

of Lagrange multipliers, noting that since 〈i|j〉 = δi,j and 〈α|β〉 = δα,β , the
coefficients Ciγ obey the relation

〈i|j〉 = δi,j =
∑
αβ

C∗iαCiβ〈α|β〉 =
∑
α

C∗iαCiα,

which allows us to define a functional to be minimized that reads

F [ΦHF ] = E[ΦHF ]−
A∑
i=1

εi
∑
α

C∗iαCiα. (16)
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Hartree-Fock by varying the coefficients of a wave function
expansion

Minimizing with respect to C∗iα, remembering that the equations for C∗iα and
Ciα can be written as two independent equations, we obtain

d

dC∗iα

E[ΦHF ]−
∑
j

εj
∑
α

C∗jαCjα

 = 0,

which yields for every single-particle state i and index α (recalling that the
coefficients Ciα are matrix elements of a unitary (or orthogonal for a real
symmetric matrix) matrix) the following Hartree-Fock equations

∑
β

Ciβ〈α|h|β〉+
A∑
j=1

∑
βγδ

C∗jβCjδCiγ〈αβ|v̂|γδ〉AS = εHFi Ciα.

Hartree-Fock by varying the coefficients of a wave function
expansion
We can rewrite this equation as (changing dummy variables)

∑
β

〈α|h|β〉+
A∑
j

∑
γδ

C∗jγCjδ〈αγ|v̂|βδ〉AS

Ciβ = εHFi Ciα.

Note that the sums over greek indices run over the number of basis set functions
(in principle an infinite number).

Hartree-Fock by varying the coefficients of a wave function
expansion
Defining

hHFαβ = 〈α|h|β〉+
A∑
j=1

∑
γδ

C∗jγCjδ〈αγ|v̂|βδ〉AS ,

we can rewrite the new equations as∑
γ

hHFαβ Ciβ = εHFi Ciα. (17)

The latter is nothing but a standard eigenvalue problem.
It suffices to tabulate the matrix elements 〈α|h|β〉 and 〈αγ|v̂|βδ〉AS once and

for all. Successive iterations require thus only a look-up in tables over one-body
and two-body matrix elements. These details will be discussed below when we
solve the Hartree-Fock equations numerically.
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Hartree-Fock algorithm
Our Hartree-Fock matrix is thus

ĥHFαβ = 〈α|ĥ0|β〉+
A∑
j=1

∑
γδ

C∗jγCjδ〈αγ|v̂|βδ〉AS .

The Hartree-Fock equations are solved in an iterative waym starting with a
guess for the coefficients Cjγ = δj,γ and solving the equations by diagonalization
till the new single-particle energies εHF

i do not change anymore by a prefixed
quantity.

Hartree-Fock algorithm
Normally we assume that the single-particle basis |β〉 forms an eigenbasis for

the operator ĥ0, meaning that the Hartree-Fock matrix becomes

ĥHFαβ = εαδα,β +
A∑
j=1

∑
γδ

C∗jγCjδ〈αγ|v̂|βδ〉AS .

The Hartree-Fock eigenvalue problem∑
β

ĥHFαβ Ciβ = εHF
i Ciα,

can be written out in a more compact form as

ĥHF Ĉ = εHFĈ.

Hartree-Fock algorithm
The Hartree-Fock equations are, in their simplest form, solved in an iterative

way, starting with a guess for the coefficients Ciα. We label the coefficients as
C

(n)
iα , where the subscript n stands for iteration n. To set up the algorithm we

can proceed as follows:

• We start with a guess C(0)
iα = δi,α. Alternatively, we could have used

random starting values as long as the vectors are normalized. Another
possibility is to give states below the Fermi level a larger weight.

• The Hartree-Fock matrix simplifies then to (assuming that the coefficients
Ciα are real)

ĥHFαβ = εαδα,β +
A∑
j=1

∑
γδ

C
(0)
jγ C

(0)
jδ 〈αγ|v̂|βδ〉AS .
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Hartree-Fock algorithm
Solving the Hartree-Fock eigenvalue problem yields then new eigenvectors

C
(1)
iα and eigenvalues εHF (1)

i .

• With the new eigenvalues we can set up a new Hartree-Fock potential
A∑
j=1

∑
γδ

C
(1)
jγ C

(1)
jδ 〈αγ|v̂|βδ〉AS .

The diagonalization with the new Hartree-Fock potential yields new eigenvectors
and eigenvalues. This process is continued till for example∑

p |ε
(n)
i − ε(n−1)

i |
m

≤ λ,

where λ is a user prefixed quantity (λ ∼ 10−8 or smaller) and p runs over all
calculated single-particle energies and m is the number of single-particle states.

Analysis of Hartree-Fock equations and Koopman’s theo-
rem
We can rewrite the ground state energy by adding and subtracting ûHF (xi)

EHF0 = 〈Φ0|Ĥ|Φ0〉 =
A∑
i≤F

〈i|ĥ0+ûHF |j〉+1
2

A∑
i≤F

A∑
j≤F

[〈ij|v̂|ij〉 − 〈ij|v̂|ji〉]−
A∑
i≤F

〈i|ûHF |i〉,

which results in

EHF0 =
A∑
i≤F

εHFi + 1
2

A∑
i≤F

A∑
j≤F

[〈ij|v̂|ij〉 − 〈ij|v̂|ji〉]−
A∑
i≤F

〈i|ûHF |i〉.

Our single-particle states ijk . . . are now single-particle states obtained from the
solution of the Hartree-Fock equations.

Analysis of Hartree-Fock equations and Koopman’s theo-
rem
Using our definition of the Hartree-Fock single-particle energies we obtain

then the following expression for the total ground-state energy

EHF0 =
A∑
i≤F

εi −
1
2

A∑
i≤F

A∑
j≤F

[〈ij|v̂|ij〉 − 〈ij|v̂|ji〉] .

This form will be used in our discussion of Koopman’s theorem.
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Analysis of Hartree-Fock equations and Koopman’s theo-
rem
Atomic physics case. We have

E[ΦHF(N)] =
H∑
i=1
〈i|ĥ0|i〉+ 1

2

N∑
ij=1
〈ij|v̂|ij〉AS ,

where ΦHF(N) is the new Slater determinant defined by the new basis of Eq. (13)
for N electrons (same Z). If we assume that the single-particle wave functions
in the new basis do not change when we remove one electron or add one electron,
we can then define the corresponding energy for the N − 1 systems as

E[ΦHF(N − 1)] =
N∑

i=1;i6=k
〈i|ĥ0|i〉+ 1

2

N∑
ij=1;i,j 6=k

〈ij|v̂|ij〉AS ,

where we have removed a single-particle state k ≤ F , that is a state below the
Fermi level.

Analysis of Hartree-Fock equations and Koopman’s theo-
rem
Calculating the difference

E[ΦHF(N)]−E[ΦHF(N−1)] = 〈k|ĥ0|k〉+
1
2

N∑
i=1;i6=k

〈ik|v̂|ik〉AS+1
2

N∑
j=1;j 6=k

〈kj|v̂|kj〉AS ,

we obtain

E[ΦHF(N)]− E[ΦHF(N − 1)] = 〈k|ĥ0|k〉+ 1
2

N∑
j=1
〈kj|v̂|kj〉AS

which is just our definition of the Hartree-Fock single-particle energy

E[ΦHF(N)]− E[ΦHF(N − 1)] = εHF
k

Analysis of Hartree-Fock equations and Koopman’s theo-
rem
Similarly, we can now compute the difference (we label the single-particle

states above the Fermi level as abcd > F )

E[ΦHF(N + 1)]− E[ΦHF(N)] = εHF
a .

These two equations can thus be used to the electron affinity or ionization energies,
respectively. Koopman’s theorem states that for example the ionization energy of
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a closed-shell system is given by the energy of the highest occupied single-particle
state. If we assume that changing the number of electrons from N to N + 1 does
not change the Hartree-Fock single-particle energies and eigenfunctions, then
Koopman’s theorem simply states that the ionization energy of an atom is given
by the single-particle energy of the last bound state. In a similar way, we can
also define the electron affinities.

Analysis of Hartree-Fock equations and Koopman’s theo-
rem
As an example, consider a simple model for atomic sodium, Na. Neutral

sodium has eleven electrons, with the weakest bound one being confined the 3s
single-particle quantum numbers. The energy needed to remove an electron from
neutral sodium is rather small, 5.1391 eV, a feature which pertains to all alkali
metals. Having performed a Hartree-Fock calculation for neutral sodium would
then allows us to compute the ionization energy by using the single-particle
energy for the 3s states, namely εHF

3s .
From these considerations, we see that Hartree-Fock theory allows us to make

a connection between experimental observables (here ionization and affinity
energies) and the underlying interactions between particles. In this sense, we are
now linking the dynamics and structure of a many-body system with the laws of
motion which govern the system. Our approach is a reductionistic one, meaning
that we want to understand the laws of motion in terms of the particles or degrees
of freedom which we believe are the fundamental ones. Our Slater determinant,
being constructed as the product of various single-particle functions, follows this
philosophy.

Analysis of Hartree-Fock equations, Koopman’s theorem
With similar arguments as in atomic physics, we can now use Hartree-Fock

theory to make a link between nuclear forces and separation energies. Changing
to nuclear system, we define

E[ΦHF(A)] =
A∑
i=1
〈i|ĥ0|i〉+ 1

2

A∑
ij=1
〈ij|v̂|ij〉AS ,

where ΦHF(A) is the new Slater determinant defined by the new basis of Eq. (13)
for A nucleons, where A = N + Z, with N now being the number of neutrons
and Z th enumber of protons. If we assume again that the single-particle wave
functions in the new basis do not change from a nucleus with A nucleons to a
nucleus with A− 1 nucleons, we can then define the corresponding energy for
the A− 1 systems as

E[ΦHF(A− 1)] =
A∑

i=1;i 6=k
〈i|ĥ0|i〉+ 1

2

A∑
ij=1;i,j 6=k

〈ij|v̂|ij〉AS ,
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where we have removed a single-particle state k ≤ F , that is a state below the
Fermi level.

Analysis of Hartree-Fock equations and Koopman’s theo-
rem
Calculating the difference

E[ΦHF(A)]−E[ΦHF(A−1)] = 〈k|ĥ0|k〉+
1
2

A∑
i=1;i 6=k

〈ik|v̂|ik〉AS+1
2

A∑
j=1;j 6=k

〈kj|v̂|kj〉AS ,

which becomes

E[ΦHF(A)]− E[ΦHF(A− 1)] = 〈k|ĥ0|k〉+ 1
2

A∑
j=1
〈kj|v̂|kj〉AS

which is just our definition of the Hartree-Fock single-particle energy

E[ΦHF(A)]− E[ΦHF(A− 1)] = εHF
k

Analysis of Hartree-Fock equations and Koopman’s theo-
rem
Similarly, we can now compute the difference (recall that the single-particle

states abcd > F )
E[ΦHF(A+ 1)]− E[ΦHF(A)] = εHF

a .

If we then recall that the binding energy differences

BE(A)−BE(A− 1) and BE(A+ 1)−BE(A),

define the separation energies, we see that the Hartree-Fock single-particle
energies can be used to define separation energies. We have thus our first link
between nuclear forces (included in the potential energy term) and an observable
quantity defined by differences in binding energies.

Analysis of Hartree-Fock equations and Koopman’s theo-
rem
We have thus the following interpretations (if the single-particle field do not

change)

BE(A)−BE(A− 1) ≈ E[ΦHF(A)]− E[ΦHF(A− 1)] = εHF
k ,

and
BE(A+ 1)−BE(A) ≈ E[ΦHF(A+ 1)]− E[ΦHF(A)] = εHF

a .
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If we use 16O as our closed-shell nucleus, we could then interpret the separation
energy

BE(16O)−BE(15O) ≈ εHF
0pν1/2

,

and
BE(16O)−BE(15N) ≈ εHF

0pπ1/2
.

Analysis of Hartree-Fock equations and Koopman’s theo-
rem
Similalry, we could interpret

BE(17O)−BE(16O) ≈ εHF
0dν5/2

,

and
BE(17F)−BE(16O) ≈ εHF

0dπ5/2
.

We can continue like this for all A± 1 nuclei where A is a good closed-shell (or
subshell closure) nucleus. Examples are 22O, 24O, 40Ca, 48Ca, 52Ca, 54Ca, 56Ni,
68Ni, 78Ni, 90Zr, 88Sr, 100Sn, 132Sn and 208Pb, to mention some possile cases.

Analysis of Hartree-Fock equations and Koopman’s theo-
rem

We can thus make our first interpretation of the separation energies in terms
of the simplest possible many-body theory. If we also recall that the so-called
energy gap for neutrons (or protons) is defined as

∆Sn = 2BE(N,Z)−BE(N − 1, Z)−BE(N + 1, Z),

for neutrons and the corresponding gap for protons

∆Sp = 2BE(N,Z)−BE(N,Z − 1)−BE(N,Z + 1),

we can define the neutron and proton energy gaps for 16O as

∆Sν = εHF
0dν5/2

− εHF
0pν1/2

,

and
∆Sπ = εHF

0dπ5/2
− εHF

0pπ1/2
.

*
Exercise 1: Hartree-Fock Slater determinant
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Consider a Slater determinant built up of orthogonal single-particle orbitals
ψλ, with λ = 1, 2, . . . , A.

The unitary transformation

ψa =
∑
λ

Caλφλ,

brings us into the new basis. The new basis has quantum numbers a = 1, 2, . . . , A.
aragraph!paragraph>paragraph>-0.5em

a) Show that the new basis is orthogonal.
aragraph!paragraph>paragraph>-0.5em

b) Show that the new Slater determinant constructed from the new single-
particle wave functions can be written as the determinant based on the previous
basis and the determinant of the matrix C.

aragraph!paragraph>paragraph>-0.5em

c) Show that the old and the new Slater determinants are equal up to a
complex constant with absolute value unity.

Hint. Hint: C is a unitary matrix.

Developing a Hartree-Fock program
The single-particle energies obtained by solving the Hartree-Fock equations can
be directly related to experimental separation energies. Since Hartree-Fock
theory is the starting point for several many-body techniques (density functional
theory, random-phase approximation, shell-model etc), the aim here is to develop
a computer program to solve the Hartree-Fock equations in a given single-particle
basis, here the harmonic oscillator.

Developing a Hartree-Fock program, the algorithm
The Hartree-Fock algorithm can be broken down as follows. We recall that our
Hartree-Fock matrix is

ĥHFαβ = 〈α|ĥ0|β〉+
N∑
j=1

∑
γδ

C∗jγCjδ〈αγ|V |βδ〉AS .

Normally we assume that the single-particle basis |β〉 forms an eigenbasis for the
operator ĥ0 (this is our case), meaning that the Hartree-Fock matrix becomes

ĥHFαβ = εαδα,β +
N∑
j=1

∑
γδ

C∗jγCjδ〈αγ|V |βδ〉AS .
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The Hartree-Fock eigenvalue problem∑
β

ĥHFαβ Ciβ = εHF
i Ciα,

can be written out in a more compact form as

ĥHF Ĉ = εHFĈ.

Developing a Hartree-Fock program, the density matrix
The equations are often rewritten in terms of a so-called density matrix, which
is defined as

ργδ =
N∑
i=1
〈γ|i〉〈i|δ〉 =

N∑
i=1

CiγC
∗
iδ. (18)

It means that we can rewrite the Hartree-Fock Hamiltonian as

ĥHFαβ = εαδα,β +
∑
γδ

ργδ〈αγ|V |βδ〉AS .

It is convenient to use the density matrix since we can precalculate in every
iteration the product of two eigenvector components C.

Developing a Hartree-Fock program, additional considera-
tions
Note that 〈α|ĥ0|β〉 denotes the matrix elements of the one-body part of the
starting hamiltonian. For self-bound nuclei 〈α|ĥ0|β〉 is the kinetic energy, whereas
for neutron drops, 〈α|ĥ0|β〉 represents the harmonic oscillator hamiltonian since
the system is confined in a harmonic trap. If we are working in a harmonic
oscillator basis with the same ω as the trapping potential, then 〈α|ĥ0|β〉 is
diagonal.

Developing a Hartree-Fock program, a simple Python pro-
gram
An example of a function written in python which performs the Hartree-Fock
calculation is shown here. In setting up your code you will need to write a
function which sets up the single-particle basis, the matrix elements tαγ of the
one-body operator (called h0 in the function below) and the antisymmetrized
TBMEs (called nninteraction in the code link below) and the density matrix
elements ρβδ (called densityMatrix below). The python program shows how one
can, in a brute force way read in matrix elements in m-scheme and compute
the Hartree-Fock single-particle energies for four major shells. The interaction
which has been used is the so-called N3LO interaction of Machleidt and Entem
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using the Similarity Renormalization Group approach method to renormalize
the interaction, using an oscillator energy ~ω = 10 MeV.

The nucleon-nucleon two-body matrix elements are in m-scheme and are
fully anti-symmetrized. The Hartree-Fock programs uses the density matrix
discussed above in order to compute the Hartree-Fock matrix. Here we display
the Hartree-Fock part only, assuming that single-particle data and two-body
matrix elements have already been read in.

Developing a Hartree-Fock program, a simple Python pro-
gram and input files
The input file spdata.dat contains the information of all single-particle quantum
numbers needed to define this space. In total we have 40 single-particle states
labeled by n, j, l and m, where m is the projection of the total single-particle
angular momentum j. To every set of single-particle quantum numbers there is a
unique number p identifiying them, meaning that the two-body matrix elements
in the file twobody.dat are identified as 〈pq|v̂|rs〉.

You will need to read these two files and set up arrays which store the matrix
elements while running the program.

Developing a Hartree-Fock program, the simple Python
program

""" Star HF-iterations, preparing variables and density matrix """

""" Coefficients for setting up density matrix, assuming only one along the diagonals """
C = np.eye(spOrbitals) # HF coefficients
DensityMatrix = np.zeros([spOrbitals,spOrbitals])
for gamma in range(spOrbitals):

for delta in range(spOrbitals):
sum = 0.0
for i in range(Nparticles):

sum += C[gamma][i]*C[delta][i]
DensityMatrix[gamma][delta] = Decimal(sum)

maxHFiter = 100
epsilon = 1.0e-10
difference = 1.0
hf_count = 0
oldenergies = np.zeros(spOrbitals)
newenergies = np.zeros(spOrbitals)
while hf_count < maxHFiter and difference > epsilon:

print "############### Iteration %i ###############" % hf_count
HFmatrix = np.zeros([spOrbitals,spOrbitals])

for alpha in range(spOrbitals):
for beta in range(spOrbitals):

""" If tests for three-dimensional systems, including isospin conservation """
if l[alpha] != l[beta] and j[alpha] != j[beta] and mj[alpha] != mj[beta] and tz[alpha] != tz[beta]: continue
""" Setting up the Fock matrix using the density matrix and antisymmetrized NN interaction in m-scheme """

sumFockTerm = 0.0
for gamma in range(spOrbitals):

for delta in range(spOrbitals):
if (mj[alpha]+mj[gamma]) != (mj[beta]+mj[delta]) and (tz[alpha]+tz[gamma]) != (tz[beta]+tz[delta]): continue
sumFockTerm += DensityMatrix[gamma][delta]*nninteraction[alpha][gamma][beta][delta]
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HFmatrix[alpha][beta] = Decimal(sumFockTerm)
""" Adding the one-body term, here plain harmonic oscillator """
if beta == alpha: HFmatrix[alpha][alpha] += singleparticleH[alpha]

spenergies, C = np.linalg.eigh(HFmatrix)
""" Setting up new density matrix in m-scheme """
DensityMatrix = np.zeros([spOrbitals,spOrbitals])
for gamma in range(spOrbitals):

for delta in range(spOrbitals):
sum = 0.0
for i in range(Nparticles):

sum += C[gamma][i]*C[delta][i]
DensityMatrix[gamma][delta] = Decimal(sum)

newenergies = spenergies
""" Brute force computation of difference between previous and new sp HF energies """
sum =0.0
for i in range(spOrbitals):

sum += (abs(newenergies[i]-oldenergies[i]))/spOrbitals
difference = sum
oldenergies = newenergies
print "Single-particle energies, ordering may have changed "
for i in range(spOrbitals):

print(’{0:4d} {1:.4f}’.format(i, Decimal(oldenergies[i])))
hf_count += 1

Developing a Hartree-Fock program, analyzing the results
Running the program, one finds that the lowest-lying states for a nucleus like
16O, we see that the nucleon-nucleon force brings a natural spin-orbit splitting
for the 0p states (or other states except the s-states). Since we are using the
m-scheme for our calculations, we observe that there are several states with the
same eigenvalues. The number of eigenvalues corresponds to the degeneracy
2j + 1 and is well respected in our calculations, as see from the table here.

The values of the lowest-lying states are (π for protons and ν for neutrons)
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Quantum numbers Energy [MeV]
0sπ1/2 -40.4602
0sπ1/2 -40.4602
0sν1/2 -40.6426
0sν1/2 -40.6426
0pπ1/2 -6.7133
0pπ1/2 -6.7133
0pν1/2 -6.8403
0pν1/2 -6.8403
0pπ3/2 -11.5886
0pπ3/2 -11.5886
0pπ3/2 -11.5886
0pπ3/2 -11.5886
0pν3/2 -11.7201
0pν3/2 -11.7201
0pν3/2 -11.7201
0pν3/2 -11.7201
0dπ5/2 18.7589
0dν5/2 18.8082

Developing a Hartree-Fock program, separation energies
We can use these results to attempt our first link with experimental data, namely
to compute the shell gap or the separation energies. The shell gap for neutrons
is given by

∆Sn = 2BE(N,Z)−BE(N − 1, Z)−BE(N + 1, Z).

For 16O we have an experimental value for the shell gap of 11.51 MeV for
neutrons, while our Hartree-Fock calculations result in 25.65 MeV. This means
that correlations beyond a simple Hartree-Fock calculation with a two-body force
play an important role in nuclear physics. The splitting between the 0pν3/2 and
the 0pν1/2 state is 4.88 MeV, while the experimental value for the gap between the
ground state 1/2− and the first excited 3/2− states is 6.08 MeV. The two-nucleon
spin-orbit force plays a central role here. In our discussion of nuclear forces we
will see how the spin-orbit force comes into play here.

Analyzing the results in terms of the nuclear force compo-
nents
Our Hamiltonian contains one-body, two-body and three-body contributions and
in the equations below, we label states below the Fermi level F as i, j, . . . while
states above the Fermi level are defined by a, b, . . .. General single-particle states
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are given by the letters p, q . . . . The quantities pq . . . represent the quantum
numbers of various single-particle states, namely p = (np, lp, jp,mjp , tzp). The
commutation relations for creation and annihilations operators with respect to a
given reference state are then given by{

a†p, aq
}

= δpq, p, q ≤ F
{
ap, a

†
q

}
= δpq, p, q > F.

Reminder on definitions
The action of the creation and annihilation operators with respect to a reference
state Φ0 are then given by ai|Φ0〉 = |Φi〉 where a state labeled by |Φi〉 means
that a particle in a single-particle state i has been removed. Similarly, we have
a†a|Φ0〉 = |Φa〉, a†i |Φ0〉 = 0 and aa|Φ0〉 = 0. With the above definitions, we write
our Hamiltonian as

Ĥ = Ĥ0 + V̂ + Ŵ ,

where the single-particle part is given by

Ĥ0 =
∑
pq

〈p|ĥ0|q〉a†paq.

A general Hamiltonian
This part of the Hamiltonian is commonly defined in terms of some external
potential like the three-dimensional harmonic oscillator or a particular mean-field
basis. Similarly, the two-body part of the Hamiltonian is given by

V̂ = 1
4
∑
pqrs

〈pq|v̂|rs〉ASa
†
pa
†
qasar

where we have employed antisymmetric matrix elements defined as

〈pq|v̂|rs〉AS = 〈pq|v̂|rs〉 − 〈pq|v̂|sr〉.

We will assume that the two-body operator v̂ is given by a nucleon-nucleon
interaction.

Adding a three-body interaction
Finally, the three-body part of our Hamiltonian operator is defined by

Ŵ = 1
36

∑
pqrstu

〈pqr|ŵ|stu〉ASa
†
pa
†
qa
†
rauatas,

where we have defined the antisymmetric matrix elements

〈pqr|ŵ|stu〉AS = 〈pqr|ŵ|stu〉+〈pqr|ŵ|tus〉+〈pqr|ŵ|ust〉−〈pqr|ŵ|sut〉−〈pqr|ŵ|tsu〉−〈pqr|ŵ|uts〉.
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We will in the discussions to come drop the AS subscript, assuming thereby that
all matrix elements are antisymmetrized.

An additional reminder
Introducing a reference state |Φ0〉 as our new vacuum state leads to a redefinition
of the Hamiltonian in terms of a constant reference energy E0 defined as

E0 =
∑
i≤F

〈i|ĥ0|i〉+ 1
2
∑
ij≤F

〈ij|v̂|ij〉+ 1
6
∑
ijk≤F

〈ijk|ŵ|ijk〉,

and a normal-ordered Hamiltonian

ĤN =
∑
pq

〈p|f̃ |q〉a†paq+
1
4
∑
pqrs

〈pq|ṽ|rs〉a†pa†qasar+
1
36
∑
pqr
stu

〈pqr|ŵ|stu〉a†pa†qa†rauatas

where

〈p|f̃ |q〉 = 〈p|ĥ0|q〉+
∑
i≤F

〈pi|v̂|qi〉+ 1
2
∑
ij≤αF

〈pij|ŵ|qij〉,

represents a correction to the single-particle operator ĥ0 due to contributions
from the nucleons below the Fermi level.

Modification due to a three-body force
The two-body matrix elements are now modified in order to account for medium-
modified contributions from the three-body interaction, resulting in

〈pq|ṽ|rs〉 = 〈pq|v̂|rs〉+
∑
i≤F

〈pqi|ŵ|rsi〉. (19)

In Eq. (19), the effective two-body interaction ṽ can contain both a standard
two-nucleon interaction and a density dependent contribution stemming from a
three-body interaction ŵ.

The monopole term
An important ingredient in studies of effective interactions and their applications
to nuclear structure, is the so-called monopole interaction, normally defined in
terms of a nucleon-nucleon interaction v̂

V̄αpαq =
∑
J(2J + 1)〈(αpαq)J |v̂|(αpαq)J〉∑

J(2J + 1) , (20)

where the total angular momentum of a two-body state J runs over all possible
values. In the above equation we have defined a nucleon-nucleon interaction
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in a so-called angular-momentum coupled representation with the symbol αp,q
representing all possible quantum numbers except the magnetic substates mjp,q

The monopole Hamiltonian can be interpreted as an angle-averaged matrix
element. We have assumed that the single-particle angular momenta jp and jq
couple to a total two-particle angular momentum J . The summation over J
with the value 2J + 1 can be replaced by

∑
J(2J + 1) = (2jp + 1)(2jq + 1) if

αp 6= αq. If αp = αq we can generalize this equation to, assuming that our states
can represent either protons or neutrons,∑

J

(2J + 1) = (2jp + 1)(2jq + 1− δαpαq ). (21)

More on the monopole term
The spherical single-particle states, provide an important ingredient for the
formation of shells and interplay between spherical configurations and defor-
mation in nuclei. Large shell gaps obtained from a monopole Hamiltonian are
a prerequisite to obtain certain magic numbers. Equation (20) can also be
expressed in terms of the medium-modified two-body interaction defined in Eq.
(19), that is we can have

Ṽαpαq =
∑
J(2J + 1)〈(αpαq)J |ṽ|(αpαq)J〉∑

J(2J + 1) . (22)

Linking the monopole part with Hartree-Fock theory
The single-particle energy εp resulting from for example a self-consistent Hartree-
Fock field, or from first order in many-body perturbation theory, is given by (in
an uncoupled basis)

εp = 〈p|f̃ |p〉 = 〈p|ĥ0|p〉+
∑
i≤F

〈pi|v̂|pi〉+ 1
2
∑
ij≤F

〈pij|ŵ|pij〉,

where we have included the three-body interaction as well.

Linking the monopole part with Hartree-Fock theory, an-
gular momentum
We can rewrite this equation in an angular coupled basis (jj-coupled basis) as

εαp = 〈αp|ĥ0|αp〉+ 1
2jp + 1

∑
αi≤αF

∑
J

(2J + 1)〈(αpαi)J |v̂|(αpαi)J〉, (23)

or

εαp = 〈αp|ĥ0|αp〉+ 1
2jp + 1

∑
αi≤αF

∑
J

(2J + 1)〈(αpαi)J |ṽ|(αpαi)J〉, (24)
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where the first equation contains a two-body force only while Eq. (24) includes
the medium-modified contribution from the three-body interaction as well.

Linking the monopole part with Hartree-Fock theory, more
definitions
In Eqs. (23) and (24), we have used a compact notation for the single-particle
states, with the symbol αp etc representing all possible quantum numbers
except the magnetic substates mjp , that is αp = (np, lp, jp, tzp). The symbol αF
stands now for all single-particle states up to the Fermi level, excluding again
the magnetic substates. In the above two-body interaction matrix elements
〈(αpαi)J |v̂(ṽ)|(αpαi)J〉 we have dropped additional quantum numbers like the
isospin projection. Our interactions are diagonal in the projection of the total
isospin but breaks both isospin symmetry and charge symmetry.

Final expressions for the monopole term
Using the definition of the single-particle energy in Eq. (23), the definition of
the monopole matrix element in Eqs. (20) or (22) and Eq. (21), we can rewrite
Eq. (23) as

εαp = 〈αp|ĥ0|αp〉+
∑

αi≤αF

Nαi V̄αpαi , (25)

with Nαi = 2αi + 1, and Eq. (24) as

εαp = 〈αp|ĥ0|αp〉+
∑

αi≤αF

Nαi Ṽαpαi . (26)

Analyzing our results, decomposing the Hamiltonian
The effective interaction is a scalar two-body operator. A general scalar two-body
operator v̂ can be written as

v̂ =
∑
k

v̂k =
∑
k

C(k) ·Q(k), (27)

where the operators C(k) and Q(k) are irreducible spherical tensor operators
of rank k, acting in spin and coordinate space, respectively. The value of k is
limited to k ≤ 2 since the total eigenspin of the two-nucleon system is either
0 or 1. The term with k = 0 refers to the central component of the two-body
operator. The values of k = 1 and k = 2 are called the vector and the tensor
components, respectively. The vector term is also called the two-body spin-
orbit term, although it also contains the anti-symmetric spin-orbit term. Using
standard angular momentum algebra it is rather straightforward to relate the
matrix elements v̂k to those of say v̂ or ṽ.
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Analyzing our results, decomposing the Hamiltonian
One possible decomposition of the effective interaction is to express the k-th com-
ponent of the interaction 〈(αpαq)J |v̂k|(αrαs)J〉 in a jj-coupled basis, where v̂k
is related to the matrix elements 〈(αpαq)J |v̂|(αrαs)J〉 (or 〈(αpαq)J |ṽ|(αrαs)J〉
through the relation

〈(αpαq)J |v̂k|(αrαs)J〉 = (−1)J(2k + 1)
∑

LL′SS′

〈αpαq|LSJ〉〈αrαs|L′S′J〉
{

L S J
S′ L′ k

}
×
∑
J′

(−1)J
′
(2J ′ + 1)

{
L S J ′

S′ L′ k

} ∑
α′
pα

′
qα

′
rα

′
s

〈α′pα′q|LSJ ′〉

× 〈α′rα′s|L′S′J ′〉〈(α′pα′q)J ′|v̂|(α′rα′s)J ′〉. (28)

Analyzing our results, decomposing the Hamiltonian
The two-particle matrix elements are normalized and antisymmetrized. A similar
expression applies to the medium-modified two-body interaction ṽ of Eq. (19)
as well. The symbol 〈αpαq|LSJ〉 is a shorthand for the LS − jj transformation
coefficient,

〈αpαq|λSJ〉 =
√

(2jp + 1)(2jq + 1)(2λ+ 1)(2S + 1)

 lp
1
2 jp

lq
1
2 jq

λ S J


Analyzing our results, decomposing the Hamiltonian
The transformation from an LS basis to a jj-coupled scheme is then given by
the relation

|(αpαq)J〉 =
∑
LS

〈αpαq|LSJ〉|(α̃pα̃q)LSJ〉,

where the symbol like α̃p refers to the quantum numbers in an LS basis, that is
α̃p = (np, lp, sp, tzp).

To derive Eq. (28), we have used the fact that the two-body matrix elements
of v̂k can also be interpreted in the representation of the LS-coupling scheme.

Analyzing our results, decomposing the Hamiltonian
Similar to the decomposition in the jj-scheme, the LS-coupled matrix element
of a given component k are related to the corresponding matrix elements of the
total interaction in the jj-scheme by
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〈(α̃pα̃q)LSJ ′T |v̂k|(α̃rα̃s)L′S′J ′T 〉 = 1√
(1 + δα̃pα̃q )(1 + δα̃rα̃s)

(−1)J′
k̂

{
L S J ′

S′ L′ k

}

×
∑
J

(−1)J Ĵ
{

L S J
S′ L′ k

} ∑
αpαqαrαs

〈αpαq|LSJ〉〈αrαs|L′S′J〉

×
√

(1 + δαpαq )(1 + δαrαs)〈(αpαq)JT |v̂|(αrαs)JT 〉.
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