
Learning from data: Model Selection (I)

Christian Forssén

Department of Physics, Chalmers University of Technology, Sweden

Jun 23, 2019

So far, we have been concerned with the problem of parameter estimation. In
studying the linear relationship between two quantities, for example, we discussed
how to infer the slope and the offset of the associated straight-line model. Often,
however, there is a question as to whether a quadratic, or even cubic, function
might be a more appropriate model. In this lecture, we will consider the broad
class of scientific problems when there is uncertainty as to which one of a set of
alternative models is most suitable. In the Bayesian terminology these can be
labeled as Model Selection problems and we will discuss them in some depth.

Figure 1: Missing-mass spectrum of the tetraneutron system measured by the
double charge-exchange reaction of Helium-8 projectiles impinging on a Helium-4
target at RIBF.
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Model selection example: Based on a true story

The Story of Dr. A and Prof. B
[Reproduced, with some modifications, from Sivia, 2006].

Dr. A has a theory; Prof. B also has a theory, but with an adjustable
parameter λ. Whose theory should we prefer on the basis of data
D?— Jefferys (1939), Gull (1988), Sivia (2006)

It is clear that we need to evaluate the posterior probabilities for A and B
being correct to ascertain the relative merit of the two theories. If the ratio of
the posterior probabilities,

posterior ratio = p(A|D, I)
p(B|D, I) (1)

is very much greater than one, then we will prefer A’s theory; if it is very much
less than one, then we prefer that of B; and if it is of order unity, then the
current data are insufficient to make an informed judgement.

To estimate the odds, let us start by applying Bayes’ theorem to both the
numerator and the denominator; this gives

p(A|D, I)
p(B|D, I) = p(D|A, I)p(A|I)

p(D|B, I)p(B|I) (2)

because the term p(D|I) cancels out, top and bottom. As usual, probability
theory warns us immediately that the answer to our question depends partly on
what we thought about the two theories before the analysis of the data. To be
fair, we might take the ratio of the prior terms, on the far right of Eq. (2), to
be unity; a harsher assignment could be based on the past track records of the
theorists! To assign the probabilities involving the experimental measurements,
p(D|A, I) and p(D|B, I), we need to be able to compare the data with the
predictions of A and B: the larger the mismatch, the lower the corresponding
probability. This calculation is straightforward for Dr A, but not for Prof B; the
latter cannot make predictions without a value for λ.

To circumvent this difficulty, we can use the sum and product rule to relate
the probability we require to other pdfs which might be easier to assign. In
particular, marginalization and the product rule allow us to express p(D|B, I) as

p(D|B, I) =
∫
dλp(D,λ|B, I) =

∫
dλp(D|λ,B, I)p(λ|B, I). (3)

The first term in the integral p(D|λ,B, I), where the value of λ is given, is now
just an ordinary likelihood function; as such, it is on a par with p(D|A, I). The
second term is B’s prior pdf for λ; the onus is, therefore, on the theorist to
articulate his or her state of knowledge, or ignorance, before getting access to
the data.
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To proceed further analytically, let us make some simplifying approximations.
Assume that, a priori, Prof B is only prepared to say that λ must lie between
the limits λmin and λmax; we can then naively assign a uniform prior within this
range:

p(λ|B, I) = 1
λmax − λmin

for λmin ≤ λ ≤ λmax, (4)

and zero otherwise. Let us also take it that there is a value λ0 which yields
the closest agreement with the measurements; the corresponding probability
p(D|λ0, B, I) will be the maximum of B’s likelihood function. As long as this
adjustable parameter lies in the neighbourhood of the optimal value, λ0 ± δλ,
we would expect a reasonable fit to the data; this can be represented by the
Gaussian pdf

p(D|λ,B, I) = p(D|λ0, B, I) exp
[
− (λ− λ0)2

2δλ2

]
. (5)

The assignments of the prior (4) and the likelihood (5) are illustrated in Fig. 2.
We may note that, unlike the prior pdf p(λ|B, I), B’s likelihood function need
not be normalized with respect to λ; in other words, p(D|λ0, B, I) need not equal
1/δλ

√
2π . This is because the λ in p(D|λ,B, I) appears in the conditioning

statement, whereas the normalization requirement applies to quantities to the
left of the ‘|’ symbol.

Figure 2: A schematic representation of the prior pdf (dashed line) and the
likelihood function (solid line) for the parameter λ in Prof B’s theory.

In the evaluation of p(D|B, I), we can make use of the fact that the prior
does not depend explicitly on λ; this enables us to take p(λ|B, I) outside the
integral in Eq. (3)

p(D|B, I) = 1
λmax − λmin

∫ λmax

λmin

dλp(D|λ,B, I), (6)
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having set the limits according to the specified range. Assuming that the sharp
cut-offs do not cause a significant truncation of the Gaussian pdf of the likelihood,
its integral will be equal to δλ

√
2π times p(D|λ0, B, I). The troublesome term

then reduces to

p(D|B, I) = 1
λmax − λmin

p(D|λ0, B, I)δλ
√

2π.

Substituting this into Eq. (2), we finally see that the ratio of the posteriors
required to answer our original question decomposes into the product of three
terms:

p(A|D, I)
p(B|D, I) = p(A|I)

p(B|I) ×
p(D|A, I)

p(D|λ0, B, I) ×
λmax − λmin

δλ
√

2π
. (7)

The first term on the right-hand side reflects our relative prior preference for
the alternative theories; to be fair, we can take it to be unity. The second term
is a measure of how well the best predictions from each of the models agree with
the data; with the added flexibility of his adjustable parameter, this maximum
likelihood ratio can only favour B. The goodness-of-fit, however, cannot be the
only thing that matters; if it was, we would always prefer more complicated
explanations. Probability theory tells us that there is, indeed, another term to
be considered. As assumed earlier in the evaluation of the marginal integral
of Eq. (3), the prior range λmax − λmin will generally be much larger than the
uncertainty ±δλ permitted by the data. As such, the final term in Eq. (7) acts
to penalize B for the additional parameter; for this reason, it is often called
an Ockham factor. That is to say, we have naturally encompassed the spirit
of Ockham’s Razor: ‘Frustra fit per plura quod potest fieri per pauciora’ or, in
English, ‘it is vain to do with more what can be done with fewer’ .

Although it is satisfying to quantify the everyday guiding principle attributed
to the thirteenth-century Franciscan monk William of Ockham (or Occam, in
Latin), that we should prefer the simplest theory which agrees with the empirical
evidence, we should not get too carried away by it. After all, what do we mean
by the simpler theory if alternative models have the same number of adjustable
parameters? In the choice between Gaussian and Lorentzian peak shapes, for
example, both are defined by the position of the maximum and their width. All
that we are obliged to do, and have done, in addressing such questions is to
adhere to the rules of probability.

While accepting the clear logic leading to Eq (7), many people rightly worry
about the question of the limits λmin and λmax. Jeffreys (1939) himself was
concerned and pointed out that there would be an infinite penalty for any new
parameter if the range was allowed to go to ±∞. Stated in the abstract, this
would appear to be a severe limitation. In practice, however, it is not generally
such a problem: since the analysis is always used in specific contexts, a suitable
choice can usually be made on the basis of the relevant background information.
Even in uncharted territory, a small amount of thought soon reveals that our
state of ignorance is always far from the ±∞ scenario. If λ was the coupling
constant (or strength) for a possible fifth force, for example, then we could put
an upper bound on its magnitude because everybody would have noticed it by
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now if it had been large enough! We should also not lose sight of the fact that
the precise form of Eq (7) stems from our stated simplifying approximations;
if these are not appropriate, then eqns (2) and (3) will lead us to a somewhat
different formula.

In most cases, our relative preference for A or B is dominated by the goodness
of the fit to the data; that is to say, the maximum likelihood ratio in eqn (7)
tends to overwhelm the contributions of the other two terms. The Ockham
factor can play a crucial role, however, when both theories give comparably good
agreement with the measurements. Indeed, it becomes increasingly important
if B’s theory fails to give a significantly better fit as the quality of the data
improves. In that case, δλ continues to become smaller but the ratio of best-fit
likelihoods remains close to unity; according to Eq. (7), therefore, A’s theory is
favoured ever more strongly. By the same token, the Ockham effect disappears
if the data are either few in number, of poor quality or just fail to shed new light
on the problem at hand. This is simply because the posterior ratio of Eq. (7) is
then roughly equal to the complementary prior one, since the empirical evidence
is very weak; hence, there is no inherent preference for A’s theory unless it is
explicitly encoded in p(A|I)/p(B|I). This property can be verified formally by
going back to Eqs. (2), (5) and (6), and considering the poor-data limit in which
δλ� λmax − λmin and p(D|λ0, B, I) ≈ p(D|A, I).

One adjustable parameter each
Some further interesting features arise when we consider the case where Dr
A also has one adjustable parameter; call it µ. If we make the same sort of
probability assignments, and simplifying approximations, as for Prof B, then we
find that

p(A|D, I)
p(B|D, I) = p(A|I)

p(B|I) ×
p(D|µ0, A, I)
p(D|λ0, B, I) ×

δµ(λmax − λmin)
δλ(µmax − µmin) . (8)

This could represent the situation where we have to choose between a Gaussian
and Lorentzian shape for a signal peak, but one associated parameter is not
known. The position of the maximum may be fixed at the origin by theory, for
example, and the amplitude constrained by the normalization of the data; A
and B could then be the hypotheses favouring the alternative lineshapes, where
δµ and δλ are their related full-width-half-maxima. If we give equal weight to A
and B before the analysis, and assign a similar large prior range for both µ and
λ, then Eq. (8) reduces to

p(A|D, I)
p(B|D, I) ≈

p(D|µ0, A, I)
p(D|λ0, B, I) ×

δµ

δλ
.

For data of good quality, the dominant factor will tend to be the best-fit likelihood
ratio. If both give comparable agreement with the measurements, however, then
the shape with the larger error-bar for its associated parameter will be favoured.
At first sight, it might seem rather odd that the less discriminating theory can
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gain the upper hand. It appears less strange once we realize that, in the context
of model selection, a larger ‘error-bar’ means that more parameter values are
consistent with the given hypothesis; hence its preferential treatment.

One adjustable parameter each; different prior ranges
Finally, we can also consider the situation where Mr A and Mr B have the same
physical theory but assign a different prior range for λ (or µ). Although Eq. (7)
can be seen as representing the case when (µmax − µmin) is infinitesimally small,
so that A has no flexibility, Eq. (8) is more appropriate when the limits set by
both theorists are large enough to encompass all the parameter values giving a
reasonable fit to the data. With equal initial weighting towards A and B, the
latter reduces to

p(A|D, I)
p(B|D, I) = λmax − λmin

µmax − µmin
.

because the best-fit likelihood ratio will be unity (since λ0 = µ0) and δλ = δµ.
Thus, our analysis will lead us to prefer the theorist who gives the narrower prior
range; this is not unreasonable as he must have had some additional insight to
be able to predict the value of the parameter more accurately.

Comparison with parameter estimation
The dependence of the result in Eq. (7) on the prior range (λmax−λmin) can seem
a little strange, since we haven’t encountered such behaviour in the preceding
chapters. It is instructive, therefore, to compare the model selection analysis
with parameter estimation. To infer the value of λ from the data, given that B’s
theory is correct, we use Bayes’ theorem:

p(λ|D,B, I) = p(D|λ,B, I)p(λ|B, I)
p(D|B, I) . (9)

The numerator is the familiar product of a prior and likelihood, and the de-
nominator is usually omitted since it does not depend explicitly on λ; hence
this relationship is often written as a proportionality. From the story of Dr
A and Prof B, however, we find that the neglected term on the bottom plays
a crucial role in ascertaining the merit of B’s theory relative to a competing
alternative. In recognition of its new-found importance, the denominator in
Bayes’ theorem is sometimes called the ‘evidence’ for B; it is also referred to as
the ‘marginal likelihood’, the ‘global likelihood’ and the ‘prior predictive’. Since
all the components necessary for both parameter estimation and model selection
appear in Eq. (9), we are not dealing with any new principles; the only thing
that sets them apart is that we are asking different questions of the data.

A simple way to think about the difference between parameter estimation
and model selection is to note that, to a good approximation, the former requires
the location of the maximum of the likelihood function whereas the latter entails
the calculation of its average value. As long as λmin and λmax encompass the
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significant region of p(D|λ,B, I) around λ0, the precise bounds do not matter
for estimating the optimal parameter and need not be specified. Since the prior
range defines the domain over which the mean likelihood is computed, due
thought is necessary when dealing with model selection. Indeed, it is precisely
this act of comparing ‘average’ likelihoods rather than ‘maximum’ ones which
introduces the desired Ockham balance to the goodness- of-fit criterion. Any
likelihood gain from a better agreement with the data, allowed by the greater
flexibility of a more complicated model, has to be weighed against the additional
cost of averaging it over a larger parameter space.

Evidence calculations
The actual computation of Bayesian evidences can be a challenging task. Recall
that we often have knowledge of the posterior distribution only through sampling.
In many cases, the simple Laplace method can be used to compute the evidence
approximately, while in other cases we have to rely on special sampling algorithms
such as nested sampling or parallel tempering with thermodynamic integration.

Laplace’s method
The idea behind the Laplace approximation is simple. We assume that an
unnormalized probability density P ∗(θ) has a peak at a point θ0. We are
interested in the evidence, ZP , which is given by the normalizing constant

ZP =
∫
P ∗(θ)dKθ,

where we consider the general case in which θ is in a K-dimensional space.
We Taylor-expand the logarithm logP ∗ around the peak:

logP ∗(θ) = logP ∗(θ0)− 1
2(θ − θ0)TΣ−1(θ − θ0) + . . . ,

where Σ−1 = H is the (Hessian) matrix of second derivatives at the maximum

Hij = − ∂2

∂θi∂θj
logP ∗(θ)

∣∣∣∣
θ=θ0

.

We then approximate P ∗(θ) by an unnormalized Gaussian,

Q∗(θ) ≡ P ∗(θ0) exp
[
−1

2(θ − θ0)TΣ−1(θ − θ0)
]
,

and we approximate the normalizing constant ZP by the normalizing constant
of this Gaussian,

ZP ≈ ZQ = P ∗(θ0)
√

(2π)K
det Σ−1 .
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Predictions can then be made using this approximation Q. Physicists also call
this widely-used approximation the saddle-point approximation.

Note, in particular, that if we consider a chi-squared pdf: P ∗(θ) = exp
(
− 1

2χ
2(θ)

)
,

then we get

ZP ≈ exp
(
−1

2χ
2(θ0)

)√
(4π)K

det Σ−1 ,

where there is a factor 2K/2 that comes from the extra factor 1/2 multiplying
the covariance matrix Σ−1 and therefore appearing in all K eigenvalues.

The fact that the normalizing constant of a Gaussian is given by∫
dKθ exp

[
−1

2θ
TΣ−1θ

]
=
√

(2π)K
det Σ−1 ,

can be proved by making an orthogonal transformation into the basis u in which
Σ is transformed into a diagonal matrix. The integral then separates into a
product of one-dimensional integrals, each of the form∫

dui exp
[
−1

2λiu
2
i

]
=
√

2π
λi

The product of the eigenvalues λi is the determinant of Σ−1.
Note that the Laplace approximation is basis-dependent: if θ is transformed to

a nonlinear function u(θ) and the density is transformed to P (u) = P (θ)|dθ/du|
then in general the approximate normalizing constants ZQ will be different. This
can be viewed as a defect—since the true value ZP is basis-independent in this
approximation—or an opportunity, because we can hunt for a choice of basis in
which the Laplace approximation is most accurate.
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