
Data Analysis and Machine Learning:
Linear Regression

Morten Hjorth-Jensen1,2

1Department of Physics and Center for Computing in Science Education, University of Oslo, Norway
2Department of Physics and Astronomy and Facility for Rare Ion Beams and National Superconducting Cyclotron Laboratory, Michigan State University, USA

Jun 26, 2020

Linear Regression, basic overview
The aim of this set of lectures is to introduce basic aspects of linear regression,
a widely applied set of methods used to fit continuous functions.

We will also use these widely popular methods to introduce resampling
techniques like bootstrapping and cross-validation.

We will in particular focus on

• Ordinary linear regression

• Ridge regression

• Lasso regression

• Resampling techniques

• Bias-variance tradeoff

Why Linear Regression (aka Ordinary Least Squares and
family)?
Fitting a continuous function with linear parameterization in terms of the
parameters β.

• Method of choice for fitting a continuous function!

• Gives an excellent introduction to central Machine Learning features with
understandable pedagogical links to other methods like Neural Net-
works, Support Vector Machines etc

• Analytical expression for the fitting parameters β

c© 1999-2020, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0
license

• Analytical expressions for statistical propertiers like mean values, variances,
confidence intervals and more

• Analytical relation with probabilistic interpretations

• Easy to introduce basic concepts like bias-variance tradeoff, cross-validation,
resampling and regularization techniques and many other ML topics

• Easy to code! And links well with classification problems and logistic
regression and neural networks

• Allows for easy hands-on understanding of gradient descent methods.
These methods are at the heart of all essentially all Machine Learning
methods.

• and many more features

Additional Reading
For more discussions of Ridge and Lasso regression, Wessel van Wieringen’s article
is highly recommended. Similarly, Mehta et al’s article is also recommended.
The textbook by Hastie, Tibshirani, and Friedman on The Elements of Statistical
Learning Data Mining is highly recommended.

Regression Analysis, Definitions and Aims
Regression analysis, overarching aims

Regression modeling deals with the description of the sampling distribution of
a given random variable y and how it varies as function of another variable or
a set of such variables x = [x0, x1, . . . , xn−1]T . The first variable is called the
dependent, the outcome or the response variable while the set of variables
x is called the independent variable, or the predictor variable or the explanatory
variable.

A regression model aims at finding a likelihood function p(y|x), that is the
conditional distribution for y with a given x. The estimation of p(y|x) is made
using a data set with

• n cases i = 0, 1, 2, . . . , n− 1

• Response (target, dependent or outcome) variable yi with i = 0, 1, 2, . . . , n−
1

• p so-called explanatory (independent or predictor) variables xi = [xi0, xi1, . . . , xip−1]
with i = 0, 1, 2, . . . , n − 1 and explanatory variables running from 0 to
p− 1. See below for more explicit examples. These variables are also called
features or predictors.

2

https://arxiv.org/abs/1509.09169
https://arxiv.org/abs/1803.08823
https://link.springer.com/book/10.1007/978-0-387-84858-7
https://link.springer.com/book/10.1007/978-0-387-84858-7

The goal of the regression analysis is to extract/exploit relationship between
y and x in or to infer causal dependencies, approximations to the likelihood
functions, functional relationships and to make predictions, making fits and
many other things.

Regression analysis, overarching aims II
Consider an experiment in which p characteristics of n samples are measured.

The data from this experiment, for various explanatory variables p are normally
represented by a matrix X.

The matrix X is called the design matrix. Additional information of the
samples is available in the form of y (also as above). The variable y is generally
referred to as the response variable. The aim of regression analysis is to explain
y in terms of X through a functional relationship like yi = f(Xi,∗). When
no prior knowledge on the form of f(·) is available, it is common to assume a
linear relationship between X and y. This assumption gives rise to the linear
regression model where β = [β0, . . . , βp−1]T are the regression parameters.

Linear regression gives us a set of analytical equations for the parameters βj .

Examples
In order to understand the relation among the predictors p, the set of data

n and the target (outcome, output etc) y, consider the model we discussed for
describing nuclear binding energies.

There we assumed that we could parametrize the data using a polynomial
approximation based on the liquid drop model. Assuming

BE(A) = a0 + a1A+ a2A
2/3 + a3A

−1/3 + a4A
−1,

we have five predictors, that is the intercept, the A dependent term, the A2/3

term and the A−1/3 and A−1 terms. This gives p = 0, 1, 2, 3, 4. Furthermore we
have n entries for each predictor. It means that our design matrix is an n× p
matrix X.

Here the predictors are based on a model we have made. A popular data
set which is widely encountered in ML applications is the so-called credit card
default data from Taiwan. The data set contains data on n = 30000 credit card
holders with predictors like gender, marital status, age, profession, education,
etc. In total there are 24 such predictors or attributes leading to a design matrix
of dimensionality 24× 30000. This is however a classification problem and we
will come back to it when we discuss Logistic Regression.

General linear models
Before we proceed let us study a case from linear algebra where we aim at

fitting a set of data y = [y0, y1, . . . , yn−1]. We could think of these data as a
result of an experiment or a complicated numerical experiment. These data are
functions of a series of variables x = [x0, x1, . . . , xn−1], that is yi = y(xi) with

3

https://www.sciencedirect.com/science/article/pii/S0957417407006719?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0957417407006719?via%3Dihub

i = 0, 1, 2, . . . , n − 1. The variables xi could represent physical quantities like
time, temperature, position etc. We assume that y(x) is a smooth function.

Since obtaining these data points may not be trivial, we want to use these
data to fit a function which can allow us to make predictions for values of y
which are not in the present set. The perhaps simplest approach is to assume
we can parametrize our function in terms of a polynomial of degree n− 1 with n
points, that is

y = y(x)→ y(xi) = ỹi + εi =
n−1∑
j=0

βjx
j
i + εi,

where εi is the error in our approximation.

Rewriting the fitting procedure as a linear algebra problem
For every set of values yi, xi we have thus the corresponding set of equations

y0 = β0 + β1x
1
0 + β2x

2
0 + · · ·+ βn−1x

n−1
0 + ε0

y1 = β0 + β1x
1
1 + β2x

2
1 + · · ·+ βn−1x

n−1
1 + ε1

y2 = β0 + β1x
1
2 + β2x

2
2 + · · ·+ βn−1x

n−1
2 + ε2

.

yn−1 = β0 + β1x
1
n−1 + β2x

2
n−1 + · · ·+ βn−1x

n−1
n−1 + εn−1.

Rewriting the fitting procedure as a linear algebra problem,
more details
Defining the vectors

y = [y0, y1, y2, . . . , yn−1]T ,

and
β = [β0, β1, β2, . . . , βn−1]T ,

and
ε = [ε0, ε1, ε2, . . . , εn−1]T ,

and the design matrix

X =

1 x1

0 x2
0 xn−1

0
1 x1

1 x2
1 xn−1

1
1 x1

2 x2
2 xn−1

2
.
1 x1

n−1 x2
n−1 xn−1

n−1

we can rewrite our equations as

y = Xβ + ε.

The above design matrix is called a Vandermonde matrix.

4

https://en.wikipedia.org/wiki/Vandermonde_matrix

Generalizing the fitting procedure as a linear algebra prob-
lem
We are obviously not limited to the above polynomial expansions. We could

replace the various powers of x with elements of Fourier series or instead of xj
i

we could have cos (jxi) or sin (jxi), or time series or other orthogonal functions.
For every set of values yi, xi we can then generalize the equations to

y0 = β0x00 + β1x01 + β2x02 + · · ·+ βn−1x0n−1 + ε0

y1 = β0x10 + β1x11 + β2x12 + · · ·+ βn−1x1n−1 + ε1

y2 = β0x20 + β1x21 + β2x22 + · · ·+ βn−1x2n−1 + ε2

.

yi = β0xi0 + β1xi1 + β2xi2 + · · ·+ βn−1xin−1 + εi

.

yn−1 = β0xn−1,0 + β1xn−1,2 + β2xn−1,2 + · · ·+ βn−1xn−1,n−1 + εn−1.

Note that we have used p = n here. The matrix is thus quadratic (it may be
symmetric). This is generally not the case!

Generalizing the fitting procedure as a linear algebra prob-
lem
We redefine in turn the matrix X as

X =

x00 x01 x02 x0,n−1
x10 x11 x12 x1,n−1
x20 x21 x22 x2,n−1
.

xn−1,0 xn−1,1 xn−1,2 xn−1,n−1

and without loss of generality we rewrite again our equations as

y = Xβ + ε.

The left-hand side of this equation is kwown. Our error vector ε and the
parameter vector β are our unknown quantities. How can we obtain the optimal
set of βi values?

5

Optimizing our parameters
We have defined the matrix X via the equations

y0 = β0x00 + β1x01 + β2x02 + · · ·+ βn−1x0n−1 + ε0

y1 = β0x10 + β1x11 + β2x12 + · · ·+ βn−1x1n−1 + ε1

y2 = β0x20 + β1x21 + β2x22 + · · ·+ βn−1x2n−1 + ε1

.

yi = β0xi0 + β1xi1 + β2xi2 + · · ·+ βn−1xin−1 + ε1

.

yn−1 = β0xn−1,0 + β1xn−1,2 + β2xn−1,2 + · · ·+ βn−1xn−1,n−1 + εn−1.

As we noted above, we stayed with a system with the design matrixX ∈ Rn×n,
that is we have p = n. For reasons to come later (algorithmic arguments) we
will hereafter define our matrix as X ∈ Rn×p, with the predictors refering to
the column numbers and the entries n being the row elements.

Our model for the nuclear binding energies
In our introductory notes we looked at the so-called liquid drop model. Let us
remind ourselves about what we did by looking at the code.

We restate the parts of the code we are most interested in.
Common imports
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from IPython.display import display
import os

Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"

if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)

if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)

def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format=’png’)

6

https://compphysics.github.io/MachineLearning/doc/pub/How2ReadData/html/How2ReadData.html
https://en.wikipedia.org/wiki/Semi-empirical_mass_formula

infile = open(data_path("MassEval2016.dat"),’r’)

Read the experimental data with Pandas
Masses = pd.read_fwf(infile, usecols=(2,3,4,6,11),

names=(’N’, ’Z’, ’A’, ’Element’, ’Ebinding’),
widths=(1,3,5,5,5,1,3,4,1,13,11,11,9,1,2,11,9,1,3,1,12,11,1),
header=39,
index_col=False)

Extrapolated values are indicated by ’#’ in place of the decimal place, so
the Ebinding column won’t be numeric. Coerce to float and drop these entries.
Masses[’Ebinding’] = pd.to_numeric(Masses[’Ebinding’], errors=’coerce’)
Masses = Masses.dropna()
Convert from keV to MeV.
Masses[’Ebinding’] /= 1000

Group the DataFrame by nucleon number, A.
Masses = Masses.groupby(’A’)
Find the rows of the grouped DataFrame with the maximum binding energy.
Masses = Masses.apply(lambda t: t[t.Ebinding==t.Ebinding.max()])
A = Masses[’A’]
Z = Masses[’Z’]
N = Masses[’N’]
Element = Masses[’Element’]
Energies = Masses[’Ebinding’]

Now we set up the design matrix X
X = np.zeros((len(A),5))
X[:,0] = 1
X[:,1] = A
X[:,2] = A**(2.0/3.0)
X[:,3] = A**(-1.0/3.0)
X[:,4] = A**(-1.0)
Then nice printout using pandas
DesignMatrix = pd.DataFrame(X)
DesignMatrix.index = A
DesignMatrix.columns = [’1’, ’A’, ’A^(2/3)’, ’A^(-1/3)’, ’1/A’]
display(DesignMatrix)

With β ∈ Rp×1, it means that we will hereafter write our equations for the
approximation as

ỹ = Xβ,

throughout these lectures.

Optimizing our parameters, more details
With the above we use the design matrix to define the approximation ỹ via

the unknown quantity β as
ỹ = Xβ,

and in order to find the optimal parameters βi instead of solving the above
linear algebra problem, we define a function which gives a measure of the spread
between the values yi (which represent hopefully the exact values) and the

7

parameterized values ỹi, namely

C(β) = 1
n

n−1∑
i=0

(yi − ỹi)2 = 1
n

{
(y − ỹ)T (y − ỹ)

}
,

or using the matrix X and in a more compact matrix-vector notation as

C(β) = 1
n

{
(y −Xβ)T (y −Xβ)

}
.

This function is one possible way to define the so-called cost function.
It is also common to define the function C as

C(β) = 1
2n

n−1∑
i=0

(yi − ỹi)2
,

since when taking the first derivative with respect to the unknown parameters
β, the factor of 2 cancels out.

Interpretations and optimizing our parameters
The function

C(β) = 1
n

{
(y −Xβ)T (y −Xβ)

}
,

can be linked to the variance of the quantity yi if we interpret the latter as the
mean value. Below we will show that

yi = 〈yi〉 = β0xi,0 + β1xi,1 + β2xi,2 + · · ·+ βn−1xi,n−1 + εi,

where 〈yi〉 is the mean value. Keep in mind also that till now we have treated
yi as the exact value. Normally, the response (dependent or outcome) variable
yi the outcome of a numerical experiment or another type of experiment and is
thus only an approximation to the true value. It is then always accompanied
by an error estimate, often limited to a statistical error estimate given by the
standard deviation discussed earlier. In the discussion here we will treat yi as
our exact value for the response variable.

In order to find the parameters βi we will then minimize the spread of C(β),
that is we are going to solve the problem

min
β∈Rp

1
n

{
(y −Xβ)T (y −Xβ)

}
.

In practical terms it means we will require

∂C(β)
∂βj

= ∂

∂βj

[
1
n

n−1∑
i=0

(yi − β0xi,0 − β1xi,1 − β2xi,2 − · · · − βn−1xi,n−1)2

]
= 0,

8

which results in

∂C(β)
∂βj

= − 2
n

[
n−1∑
i=0

xij (yi − β0xi,0 − β1xi,1 − β2xi,2 − · · · − βn−1xi,n−1)
]

= 0,

or in a matrix-vector form as
∂C(β)
∂β

= 0 = XT (y −Xβ) .

Interpretations and optimizing our parameters
We can rewrite

∂C(β)
∂β

= 0 = XT (y −Xβ) ,

as
XTy = XTXβ,

and if the matrix XTX is invertible we have the solution

β =
(
XTX

)−1
XTy.

We note also that since our design matrix is defined asX ∈ Rn×p, the product
XTX ∈ Rp×p. In the above case we have that p� n, in our case p = 5 meaning
that we end up with inverting a small 5× 5 matrix. This is a rather common
situation, in many cases we end up with low-dimensional matrices to invert.
The methods discussed here and for many other supervised learning algorithms
like classification with logistic regression or support vector machines, exhibit
dimensionalities which allow for the usage of direct linear algebra methods such
as LU decomposition or Singular Value Decomposition (SVD) for finding
the inverse of the matrix XTX.

Small question: Do you think the example we have at hand here (the nuclear
binding energies) can lead to problems in inverting the matrix XTX? What
kind of problems can we expect?

Some useful matrix and vector expressions
The following matrix and vector relation will be useful here and for the rest
of the course. Vectors are always written as boldfaced lower case letters and
matrices as upper case boldfaced letters.

∂(bTa)
∂a

= b,

∂(aTAa)
∂a

= (A+AT)a,

∂tr(BA)
∂A

= BT ,

∂ log |A|
∂A

= (A−1)T .

9

Interpretations and optimizing our parameters
The residuals ε are in turn given by

ε = y − ỹ = y −Xβ,

and with
XT (y −Xβ) = 0,

we have
XT ε = XT (y −Xβ) = 0,

meaning that the solution for β is the one which minimizes the residuals. Later
we will link this with the maximum likelihood approach.

Let us now return to our nuclear binding energies and simply code the above
equations.

Own code for Ordinary Least Squares
It is rather straightforward to implement the matrix inversion and obtain the
parameters β. After having defined the matrix X we simply need to write

matrix inversion to find beta
beta = np.linalg.inv(X.T @ X) @ X.T @ Energies
or in a more old-fashioned way
beta = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(Energies)
and then make the prediction
ytilde = X @ beta

Alternatively, you can use the least squares functionality in Numpy as
fit = np.linalg.lstsq(X, Energies, rcond =None)[0]
ytildenp = np.dot(fit,X.T)

And finally we plot our fit with and compare with data
Masses[’Eapprox’] = ytilde
Generate a plot comparing the experimental with the fitted values values.
fig, ax = plt.subplots()
ax.set_xlabel(r’$A = N + Z$’)
ax.set_ylabel(r’$E_\mathrm{bind}\,/\mathrm{MeV}$’)
ax.plot(Masses[’A’], Masses[’Ebinding’], alpha=0.7, lw=2,

label=’Ame2016’)
ax.plot(Masses[’A’], Masses[’Eapprox’], alpha=0.7, lw=2, c=’m’,

label=’Fit’)
ax.legend()
save_fig("Masses2016OLS")
plt.show()

Adding error analysis and training set up
We can easily test our fit by computing the R2 score that we discussed in connec-
tion with the functionality of ScikitLearnintheintroductoryslides.SincewearenotusingScikit−
LearnherewecandefineourownR2functionas

\PYG{k}{def} \PYG{n+nf}{R2}\PYG{p}{(}\PYG{n}{y\PYGZus{}data}\PYG{p}{,} \PYG{n}{y\PYGZus{}model}\PYG{p}{):}
\PYG{k}{return} \PYG{l+m+mi}{1} \PYG{o}{\PYGZhy{}} \PYG{n}{np}\PYG{o}{.}\PYG{n}{sum}\PYG{p}{((}\PYG{n}{y\PYGZus{}data} \PYG{o}{\PYGZhy{}} \PYG{n}{y\PYGZus{}model}\PYG{p}{)} \PYG{o}{**} \PYG{l+m+mi}{2}\PYG{p}{)} \PYG{o}{/} \PYG{n}{np}\PYG{o}{.}\PYG{n}{sum}\PYG{p}{((}\PYG{n}{y\PYGZus{}data} \PYG{o}{\PYGZhy{}} \PYG{n}{np}\PYG{o}{.}\PYG{n}{mean}\PYG{p}{(}\PYG{n}{y\PYGZus{}data}\PYG{p}{))} \PYG{o}{**} \PYG{l+m+mi}{2}\PYG{p}{)}

10

