An Introduction to

Reinforcement Learning

Raghu Ramanujan
Dept. of Mathematics and Computer Science

Davidson College

ERensnnn

' Markov Chains

A Markov Chain

0.6

Assoc.

0.2 Prof 0.2 Full Prof.

$100k
C

Asst. Prof.
S10k
A

Industry
Gig
$150k
D

Tahiti
S10k
E

0.3

A 4

Markov Chain Formalism

* A finite Markov Chain is a tuple (S, P R, ¥) where:
e Sis a finite set of states

5'23{81,82,...,8n}

e Pis the transition matrix

(pn P12 ... p1n\
P21 P22 ... DP2n
P =
\pnl Pn2 ... pnn)
* Ris the reward function
R:S—R

* yis the discount factor
v €10,1)

Value Iteration

* Can we solve these equations a different way?

* One idea: use iterative approach
* \/9(s,;): expected discounted sum of rewards from s; after O steps
* VI(s;): expected discounted sum of rewards from s; after 1 step
* \(s;): expected discounted sum of rewards from s; after 2 steps

* Algorithm: compute V9(s)), Vi(s;), V4(s,), ... for all s;
 Stop when:
P max [V (s;) — VE(s;)| < e

S4

* Claim: this converges to V*(s;) as k —> oo

’ Markov Decision
Processes

Markov Decision Process Formalism

* A finite Markov Decision Process (MDP) is a 5-tuple (S, A, T, R, y)
where:
* Ais a set of actions the agent can take

A=Aai,a2,...,an}

e Tis the transition model
* No longer a matrix with entries p;, but a tensor with entries p9;
* “If 'mins; and perform action a, what is the probability | end up in 5"

P(s;|s;,a)
* S, Randyare as before

VIDP Example

Friday

VIDP Example

Friday

VIDP Example

Friday

0.3

0.5

Sat.

N

0.7

0.5

Sat.

+3

1.0

0.2

0.8

VIDP Example

Friday

0.3

0.5

1.0

0.7

0.5

0.2

Sat. P

+3

1.0

0.8

Making Decisions

* Main question: what actions should the agent take?

* We are searching for a policy:

T:S— A

* We want the optimal policy m*, one that maximizes expected sum of
discounted future rewards.

* Intuition: solve for V*, and extract * from it.

VIDP Example

Friday

0.3

0.5

1.0

0.7

0.5

0.2

Sat. P

+3

1.0

0.8

Value Iteration for MDPs

* The Bellman Equation: .
V*(si) = R(s;) + mgxyZp?jV*(sj)

j=1

* Bellman equation for dynamic programming:

Vk(s;) = R(s;) + maxy Zp?jvk_l(sj)

j=1
* Compute V9(s;), Vi(s;), V?(s;), ... for all s;until convergence
* Extract policy using greedy 1-step look-ahead:

T (s;) = argmax R(si) + WZP%V*(SJ')

j=1

Value Iteration for MDPs

 An MDP is a 5-tuple (S, A, TR, ¥)

VALUE-ITERATION(S A TR, p):
initialize value function V9(s;) = R(s))
k €1

loop until convergence:

for each s: .
VF(si) = R(s;) + maxvy Y pVF7(s;)
k €k+1 /=1

return 7 (si) = argmax R(s;) 4 > P VE(ss)
j=1

Policy Iteration

POLICY-ITERATION(S A TR p):
initialize % to a random policy
k €1
loop until convergence:
for each s;:
k T -
V7T (s4)) + ’YZP eyt
for each s;:

(s)—argmaxR(sZ —|—7sz3‘/” (55)

k €k+ 1

return it

71=1

—_—

Policy
evaluation

Policy
improvement

A More Realistic Scenario

 An MDP is a 5-tuple (S, A, T, R, ¥)

e When T and R are known:

* An offline learning problem: agent can just think for a while “in its own
head”

e Can use value or policy iteration

e When T or R are unknown:

* An online learning problem: agent needs to actually interact with the real
world to get anywhere

* Need other techniques

' Q Learning

Q-Learning

* Q*(s, a): expected sum of discounted future rewards if | take action a
in state s, and act optimally thereafter.

* How does Q*(s, a) relate to V*(s) and t*(s)?
V*(s) = max Q*(s,a)

T (s) = argmax Q*(s,a)

* Can we recursively express Q*(s, a)?

Q" (5:,a) = R(si) + 7Y py max Q"(s;,)
J

Q-Learning

Q"(s,a) = R(s) + y{p1 max Q" (s1,a’) + py max Q" (s, a")}

Q-Learning

R(s) +ymax Q*(s1,a’)

P1

Q-Learning

R(s) +ymax Q*(s1,a’)
R(s) + 7 max @ (51,

P1

Q-Learning

R(s) + Y max Q*(s1,a)
R(s) +ymaxQ(s1,a")
R(s) + vmaXQ (s2,a")

P2

Q-Learning

P1

Q-Learning

P1

>—R(s)+7{

A ITZ&XQ (317

N+ - maXQ

(s2:0")

Q-Learning

* Q*(s, a): expected sum of discounted future rewards if | take action a
in state s, and act optimally thereafter.

* How does Q*(s, a) relate to V*(s) and t*(s)?
V*(s) = max Q*(s,a)

T (s) = argmax Q*(s,a)

* Can we recursively express Q*(s, a)?

Q" (5:,a) = R(si) + 7Y py max Q"(s;,)
J

Q-Learning

* Q*(s, a): expected sum of discounted future rewards if | take action a
in state s, and act optimally thereafter.

* How does Q*(s, a) relate to V*(s) and t*(s)?
V*(s) = max Q*(s,a)

T (s) = argmax Q*(s,a)

* Q-learning update rule:

Qs,a) < Q(s,0) + a { R(s) + ymax Q(s', ') = Q(s,a) |

Deep Q-Networks (DQN)

* What if the state space is large?
* Use a function approximator to represent Q*

Qs,a) < Q(s,a) + a { R(s) + ymaxQ(s',a') — Q(s,a) |

\ J
|

“target”

Deep Q-Networks (DQN)

* What if the state space is large?
* Use a function approximator to represent Q*

* The DQN algorithm
* Plays 49 different Atari games
* Learns from raw pixel inputs
» Uses a deep CNN for predicting Q*

e Other important techniques:
* Experience replay
e Target network
* And a slew of other tricks...

, Policy Gradient
Methods

An Alternative Approach

* |f we care about the policy, why not learn it directly?

* Pros:
* More reliable/stable: we’re optimizing what we care about
* Works with continuous action spaces

* Cons:
* Less sample efficient (learning tends to happen on-policy)

* General idea:

* Use a stochastic policy
a~ 7(.|s)

e Use a function approximator (deep neural network) to represent policy
* Use gradient-based optimization: encourage good actions, discourage bad ones

The REINFORCE Algorithm

e Define the return:

R(T) = Z 7 R(s¢)

* Assume a parameterized stochastic policy
* Goal: “Find the parameters that maximize expected return”
argumax J(mg) = Error, [R(7T)]

e How?

0 <+ 6+ &V@J(ﬂ'@)

Deriving the Policy Gradient

The REINFORCE Algorithm

* To summarize, in order to perform:

0 < 0+ &V@J(?T@)

* We estimate:

T
. 1
g=- >) Velogma(arls:)R(7)

7D t=0

* And perform:

0+ 0+ ag

* Enhancements:
* Lower the variance in gradient estimates
* Use trust region updates: TRPO, PPO

Summary

* Have a sequential decision or control problem? RL may help

* Deep RL = classic RL algorithms + deep neural networks
* Can be challenging to use/tune
* PPO is a good default

* High-quality implementations are available

