An Introduction to Reinforcement Learning

Raghu Ramanujan

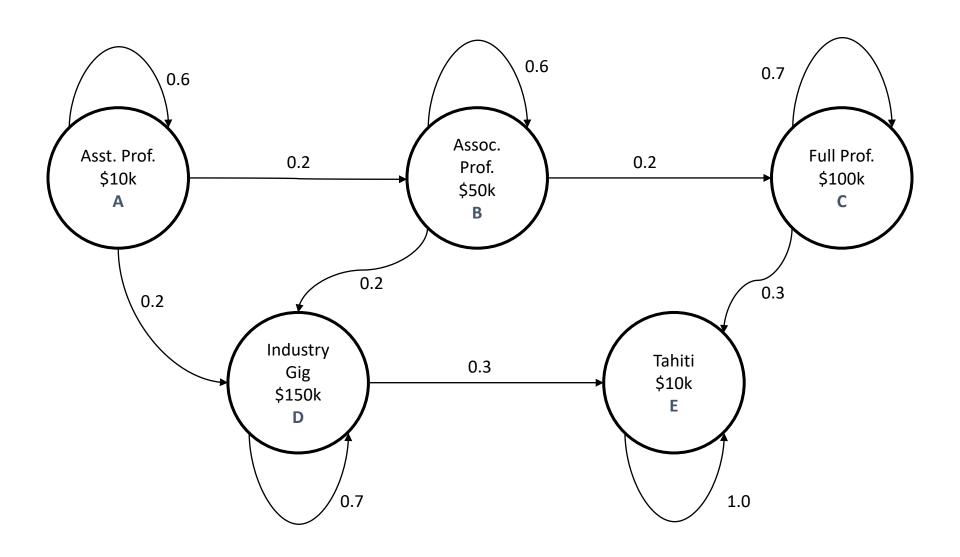
Dept. of Mathematics and Computer Science

Davidson College



Markov Chains

A Markov Chain



Markov Chain Formalism

- A finite Markov Chain is a tuple (S, P, R, γ) where:
 - *S* is a finite set of states

$$S = \{s_1, s_2, \dots, s_n\}$$

• P is the transition matrix

$$P = \begin{pmatrix} p_{11} & p_{12} & \dots & p_{1n} \\ p_{21} & p_{22} & \dots & p_{2n} \\ & \vdots & & & \\ p_{n1} & p_{n2} & \dots & p_{nn} \end{pmatrix}$$

• R is the reward function

$$R: S \mapsto \mathbb{R}$$

\(\mu\) is the discount factor

$$\gamma \in [0,1)$$

Value Iteration

- Can we solve these equations a different way?
- One idea: use iterative approach
 - $V^0(s_i)$: expected discounted sum of rewards from s_i after 0 steps
 - $V^1(s_i)$: expected discounted sum of rewards from s_i after 1 step
 - $V^2(s_i)$: expected discounted sum of rewards from s_i after 2 steps
 - ...
- Algorithm: compute $V^0(s_i)$, $V^1(s_i)$, $V^2(s_i)$, ... for all s_i
 - Stop when: $\max_{s_i} |V^{k+1}(s_i) V^k(s_i)| < \epsilon$
 - Claim: this converges to $V^*(s_i)$ as $k \rightarrow \infty$

Markov Decision Processes

Markov Decision Process Formalism

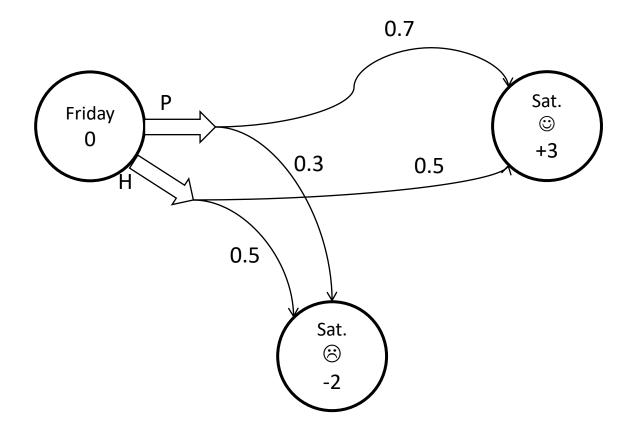
- A finite Markov Decision Process (MDP) is a 5-tuple (S, A, T, R, γ)
 where:
 - A is a set of actions the agent can take

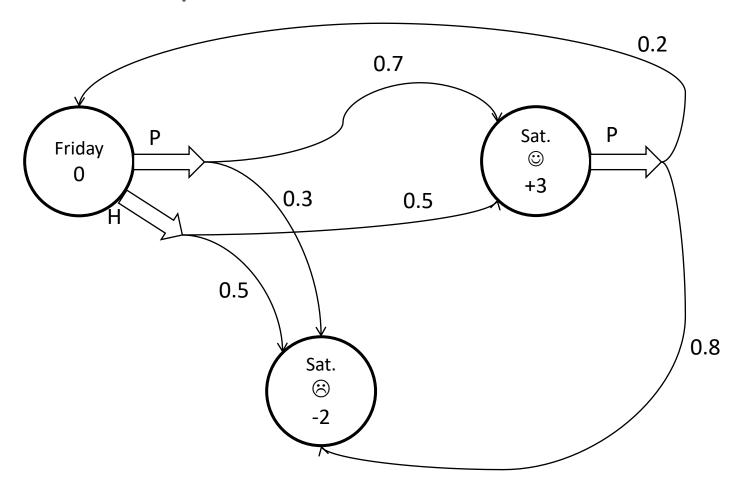
$$A = \{a_1, a_2, \dots, a_m\}$$

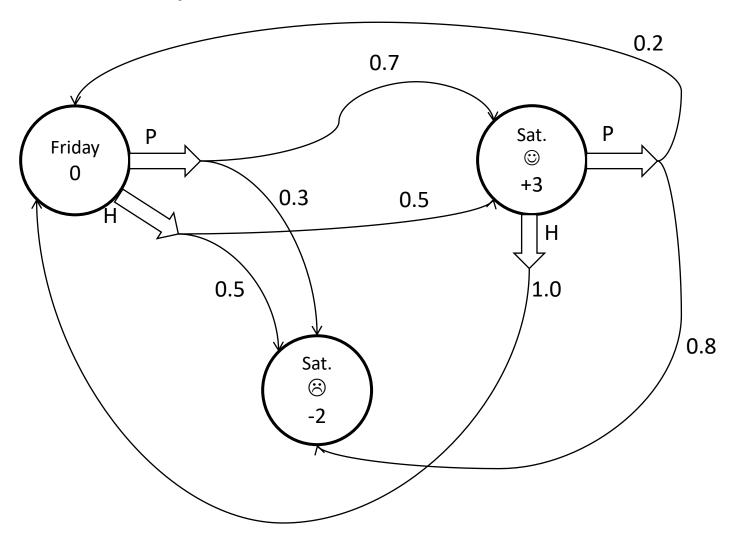
- T is the transition model
 - No longer a matrix with entries p_{ii} , but a tensor with entries p_{ii}^a
 - "If I'm in s_i and perform action a_i , what is the probability I end up in s_i "

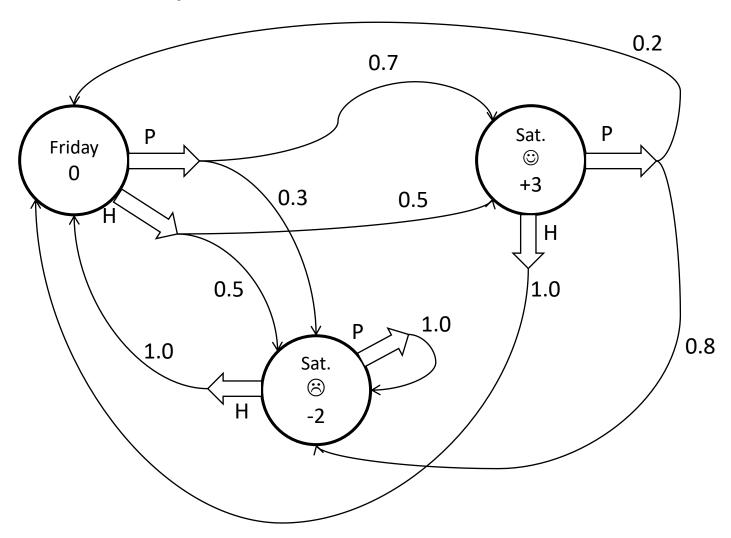
$$P(s_j|s_i,a)$$

• S, R and γ are as before







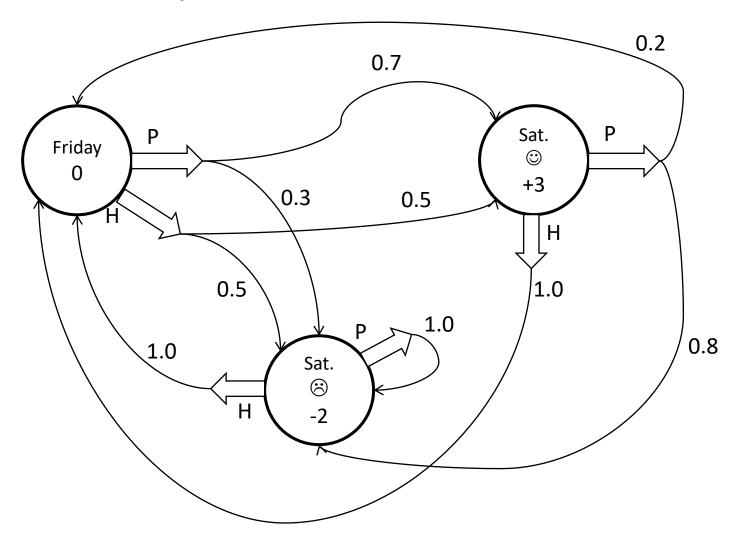


Making Decisions

- Main question: what actions should the agent take?
- We are searching for a *policy*:

$$\pi: S \mapsto A$$

- We want the *optimal* policy π^* , one that maximizes expected sum of discounted future rewards.
- Intuition: solve for V^* , and extract π^* from it.



Value Iteration for MDPs

• The Bellman Equation:

$$V^*(s_i) = R(s_i) + \max_{a} \gamma \sum_{i=1}^{n} p_{ij}^a V^*(s_j)$$

• Bellman equation for dynamic programming:

$$V^{k}(s_{i}) = R(s_{i}) + \max_{a} \gamma \sum_{j=1}^{n} p_{ij}^{a} V^{k-1}(s_{j})$$

- Compute $V^0(s_i)$, $V^1(s_i)$, $V^2(s_i)$, ... for all s_i until convergence
- Extract policy using greedy 1-step look-ahead:

$$\pi^*(s_i) = \underset{a}{\operatorname{argmax}} R(s_i) + \gamma \sum_{j=1}^n p_{ij}^a V^*(s_j)$$

Value Iteration for MDPs

• An MDP is a 5-tuple (S, A, T, R, y)

Policy Iteration

POLICY-ITERATION(S, A, T, R, Y):

initialize π^0 to a random policy

$$k \leftarrow 1$$

loop until convergence:

for each s_i :

$$V^{\pi^k}(s_i) = R(s_i) + \gamma \sum_{j=1}^n p_{ij}^{\pi^k(s_j)} V^{\pi^k}(s_j)$$

for each s_i :

$$\pi^{k+1}(s_i) = \underset{a}{\operatorname{argmax}} R(s_i) + \gamma \sum_{j=1}^{n} p_{ij}^a V^{\pi^k}(s_j)$$

$$k \leftarrow k + 1$$

return π^*

Policy evaluation

Policy mprovement

A More Realistic Scenario

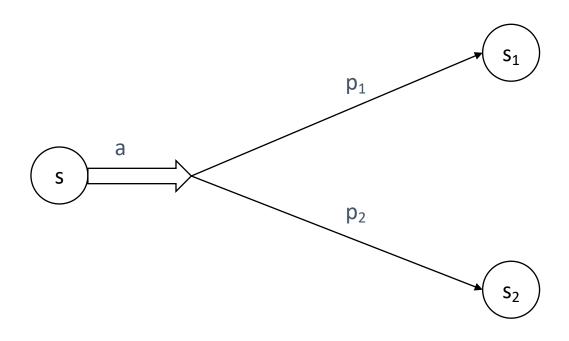
- An MDP is a 5-tuple (S, A, T, R, \(\gamma\))
- When T and R are known:
 - An offline learning problem: agent can just think for a while "in its own head"
 - Can use value or policy iteration
- When T or R are unknown:
 - An online learning problem: agent needs to actually interact with the real world to get anywhere
 - Need other techniques

- Q*(s, a): expected sum of discounted future rewards if I take action a in state s, and act optimally thereafter.
- How does $Q^*(s, a)$ relate to $V^*(s)$ and $\pi^*(s)$?

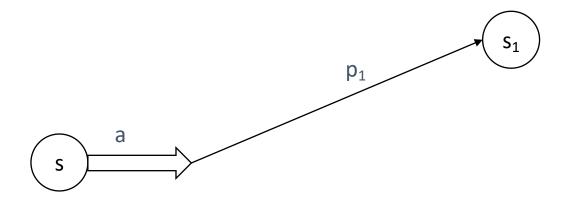
$$V^*(s) = \max_{a} Q^*(s, a)$$
$$\pi^*(s) = \operatorname*{argmax}_{a} Q^*(s, a)$$

• Can we recursively express $Q^*(s, a)$?

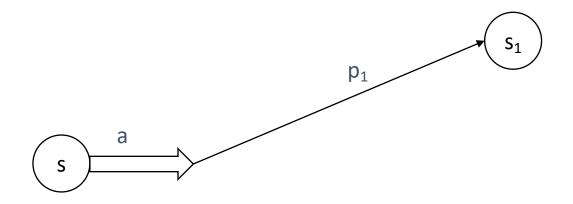
$$Q^*(s_i, a) = R(s_i) + \gamma \sum_{j} p_{ij}^a \max_{a'} Q^*(s_j, a')$$



$$Q^*(s,a) = R(s) + \gamma \{ p_1 \max_{a'} Q^*(s_1, a') + p_2 \max_{a''} Q^*(s_2, a'') \}$$

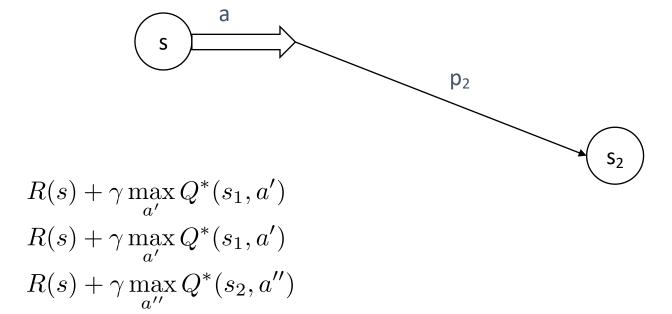


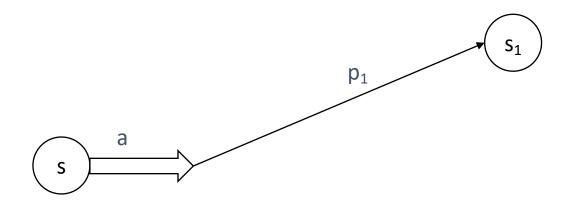
$$R(s) + \gamma \max_{a'} Q^*(s_1, a')$$



$$R(s) + \gamma \max_{a'} Q^*(s_1, a')$$

 $R(s) + \gamma \max_{a'} Q^*(s_1, a')$



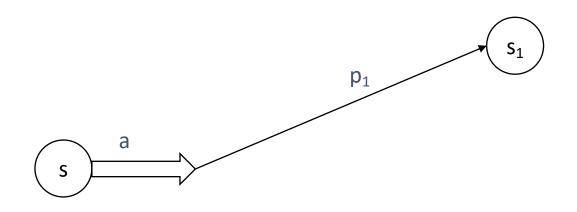


$$R(s) + \gamma \max_{a'} Q^*(s_1, a')$$

$$R(s) + \gamma \max_{a'} Q^*(s_1, a')$$

$$R(s) + \gamma \max_{a''} Q^*(s_2, a'')$$

$$R(s) + \gamma \max_{a'} Q^*(s_1, a')$$



$$R(s) + \gamma \max_{a'} Q^*(s_1, a')$$

$$R(s) + \gamma \max_{a'} Q^*(s_1, a')$$

$$R(s) + \gamma \max_{a''} Q^*(s_2, a'')$$

$$R(s) + \gamma \max_{a''} Q^*(s_2, a'')$$

$$R(s) + \gamma \max_{a'} Q^*(s_1, a')$$

$$R(s) + \gamma \max_{a'} Q^*(s_1, a')$$

- Q*(s, a): expected sum of discounted future rewards if I take action a in state s, and act optimally thereafter.
- How does $Q^*(s, a)$ relate to $V^*(s)$ and $\pi^*(s)$?

$$V^*(s) = \max_{a} Q^*(s, a)$$
$$\pi^*(s) = \operatorname*{argmax}_{a} Q^*(s, a)$$

• Can we recursively express $Q^*(s, a)$?

$$Q^*(s_i, a) = R(s_i) + \gamma \sum_{j} p_{ij}^a \max_{a'} Q^*(s_j, a')$$

- Q*(s, a): expected sum of discounted future rewards if I take action a in state s, and act optimally thereafter.
- How does $Q^*(s, a)$ relate to $V^*(s)$ and $\pi^*(s)$?

$$V^*(s) = \max_{a} Q^*(s, a)$$
$$\pi^*(s) = \operatorname*{argmax}_{a} Q^*(s, a)$$

Q-learning update rule:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left\{ R(s) + \gamma \max_{a'} Q(s',a') - Q(s,a) \right\}$$

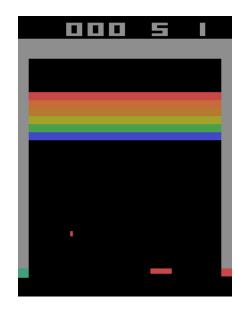
Deep Q-Networks (DQN)

- What if the state space is large?
 - Use a function approximator to represent Q*

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left\{ R(s) + \gamma \max_{a'} Q(s',a') - Q(s,a) \right\}$$
 "target"

Deep Q-Networks (DQN)

- What if the state space is large?
 - Use a function approximator to represent Q*
- The DQN algorithm
 - Plays 49 different Atari games
 - Learns from raw pixel inputs
 - Uses a deep CNN for predicting Q*
- Other important techniques:
 - Experience replay
 - Target network
 - And a slew of other tricks...



Policy Gradient Methods

An Alternative Approach

- If we care about the policy, why not learn it directly?
- Pros:
 - More reliable/stable: we're optimizing what we care about
 - Works with continuous action spaces
- Cons:
 - Less sample efficient (learning tends to happen on-policy)
- General idea:
 - Use a *stochastic* policy

$$a \sim \pi(.|s)$$

- Use a function approximator (deep neural network) to represent policy
- Use gradient-based optimization: encourage good actions, discourage bad ones

The REINFORCE Algorithm

• Define the *return*:

$$\mathcal{R}(\tau) = \sum_{t=0}^{\infty} \gamma^t R(s_t)$$

- Assume a parameterized stochastic policy $\pi_{ heta}$
- Goal: "Find the parameters that maximize expected return"

$$\operatorname{argmax}_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\mathcal{R}(\tau) \right]$$

• How?

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\pi_{\theta})$$

Deriving the Policy Gradient

The REINFORCE Algorithm

• To summarize, in order to perform:

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\pi_{\theta})$$

• We estimate:

$$\hat{g} = \frac{1}{n} \sum_{\tau \in \mathcal{D}} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \mathcal{R}(\tau)$$

• And perform:

$$\theta \leftarrow \theta + \alpha \hat{g}$$

- Enhancements:
 - Lower the variance in gradient estimates
 - Use *trust region* updates: TRPO, PPO

Summary

- Have a sequential decision or control problem? RL may help
- Deep RL = classic RL algorithms + deep neural networks
 - Can be challenging to use/tune
 - PPO is a good default
- High-quality implementations are available