
Data Analysis and Machine Learning:
From Decision Trees to Forests and all

that

Morten Hjorth-Jensen1,2

1Department of Physics and Center for Computing in Science Education, University of Oslo, Norway
2Department of Physics and Astronomy and Facility for Rare Ion Beams and National Superconducting Cyclotron Laboratory, Michigan State University, USA

Jun 26, 2020

Decision trees, overarching aims
We start here with the most basic algorithm, the so-called decision tree. With
this basic algorithm we can in turn build more complex networks, spanning from
homogeneous and heterogenous forests (bagging, random forests and more) to
one of the most popular supervised algorithms nowadays, the extreme gradient
boosting, or just XGBoost. But let us start with the simplest possible ingredient.

Decision trees are supervised learning algorithms used for both, classification
and regression tasks.

The main idea of decision trees is to find those descriptive features which
contain the most information regarding the target feature and then split the
dataset along the values of these features such that the target feature values for
the resulting underlying datasets are as pure as possible.

The descriptive features which reproduce best the target/output features are
normally said to be the most informative ones. The process of finding the most
informative feature is done until we accomplish a stopping criteria where we
then finally end up in so called leaf nodes.

Decision trees, Naming Conventions
A decision tree is typically divided into a root node, the interior nodes,
and the final leaf nodes or just leaves. These entities are then connected by
so-called branches.

The leaf nodes contain the predictions we will make for new query instances
presented to our trained model. This is possible since the model has learned the
underlying structure of the training data and hence can, given some assumptions,
make predictions about the target feature value (class) of unseen query instances.

c© 1999-2020, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0
license

A typical Decision Tree with its pertinent Jargon, Classifi-
cation Problem

This tree was produced using the Wisconsin cancer data (discussed here as well,
see code examples below) using Scikit-Learn’s decision tree classifier. Here we
have used the so-called gini index (see below) to split the various branches.

General Features
The overarching approach to decision trees is a top-down approach.

• A leaf provides the classification of a given instance.

• A node specifies a test of some attribute of the instance.

• A branch corresponds to a possible values of an attribute.

• An instance is classified by starting at the root node of the tree, testing
the attribute specified by this node, then moving down the tree branch
corresponding to the value of the attribute in the given example.

This process is then repeated for the subtree rooted at the new node.

How do we set it up?
In simplified terms, the process of training a decision tree and predicting the
target features of query instances is as follows:

1. Present a dataset containing of a number of training instances characterized
by a number of descriptive features and a target feature

2. Train the decision tree model by continuously splitting the target feature
along the values of the descriptive features using a measure of information
gain during the training process

3. Grow the tree until we accomplish a stopping criteria create leaf nodes
which represent the predictions we want to make for new query instances

2

4. Show query instances to the tree and run down the tree until we arrive at
leaf nodes

Then we are essentially done!

Decision trees and Regression
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression

steps=250

distance=0
x=0
distance_list=[]
steps_list=[]
while x<steps:

distance+=np.random.randint(-1,2)
distance_list.append(distance)
x+=1
steps_list.append(x)

plt.plot(steps_list,distance_list, color=’green’, label="Random Walk Data")

steps_list=np.asarray(steps_list)
distance_list=np.asarray(distance_list)

X=steps_list[:,np.newaxis]

#Polynomial fits

#Degree 2
poly_features=PolynomialFeatures(degree=2, include_bias=False)
X_poly=poly_features.fit_transform(X)

lin_reg=LinearRegression()
poly_fit=lin_reg.fit(X_poly,distance_list)
b=lin_reg.coef_
c=lin_reg.intercept_
print ("2nd degree coefficients:")
print ("zero power: ",c)
print ("first power: ", b[0])
print ("second power: ",b[1])

z = np.arange(0, steps, .01)
z_mod=b[1]*z**2+b[0]*z+c

fit_mod=b[1]*X**2+b[0]*X+c
plt.plot(z, z_mod, color=’r’, label="2nd Degree Fit")
plt.title("Polynomial Regression")

plt.xlabel("Steps")
plt.ylabel("Distance")

#Degree 10
poly_features10=PolynomialFeatures(degree=10, include_bias=False)
X_poly10=poly_features10.fit_transform(X)

3

poly_fit10=lin_reg.fit(X_poly10,distance_list)

y_plot=poly_fit10.predict(X_poly10)
plt.plot(X, y_plot, color=’black’, label="10th Degree Fit")

plt.legend()
plt.show()

#Decision Tree Regression
from sklearn.tree import DecisionTreeRegressor
regr_1=DecisionTreeRegressor(max_depth=2)
regr_2=DecisionTreeRegressor(max_depth=5)
regr_3=DecisionTreeRegressor(max_depth=7)
regr_1.fit(X, distance_list)
regr_2.fit(X, distance_list)
regr_3.fit(X, distance_list)

X_test = np.arange(0.0, steps, 0.01)[:, np.newaxis]
y_1 = regr_1.predict(X_test)
y_2 = regr_2.predict(X_test)
y_3=regr_3.predict(X_test)

Plot the results
plt.figure()
plt.scatter(X, distance_list, s=2.5, c="black", label="data")
plt.plot(X_test, y_1, color="red",

label="max_depth=2", linewidth=2)
plt.plot(X_test, y_2, color="green", label="max_depth=5", linewidth=2)
plt.plot(X_test, y_3, color="m", label="max_depth=7", linewidth=2)

plt.xlabel("Data")
plt.ylabel("Darget")
plt.title("Decision Tree Regression")
plt.legend()
plt.show()

Building a tree, regression
There are mainly two steps

1. We split the predictor space (the set of possible values x1, x2, . . . , xp) into
J distinct and non-non-overlapping regions, R1, R2, . . . , RJ .

2. For every observation that falls into the region Rj , we make the same
prediction, which is simply the mean of the response values for the training
observations in Rj .

How do we construct the regions R1, . . . , RJ? In theory, the regions could
have any shape. However, we choose to divide the predictor space into high-
dimensional rectangles, or boxes, for simplicity and for ease of interpretation
of the resulting predictive model. The goal is to find boxes R1, . . . , RJ that
minimize the MSE, given by

J∑
j=1

∑
i∈Rj

(yi − yRj
)2,

4

where yRj
is the mean response for the training observations within box j.

A top-down approach, recursive binary splitting
Unfortunately, it is computationally infeasible to consider every possible partition
of the feature space into J boxes. The common strategy is to take a top-down
approach

The approach is top-down because it begins at the top of the tree (all
observations belong to a single region) and then successively splits the predictor
space; each split is indicated via two new branches further down on the tree. It
is greedy because at each step of the tree-building process, the best split is made
at that particular step, rather than looking ahead and picking a split that will
lead to a better tree in some future step.

Making a tree
In order to implement the recursive binary splitting we start by selecting the
predictor xj and a cutpoint s that splits the predictor space into two regions R1
and R2

{X|xj < s} ,

and
{X|xj ≥ s} ,

so that we obtain the lowest MSE, that is∑
i:xi∈Rj

(yi − yR1)2 +
∑

i:xi∈R2

(yi − yR2)2,

which we want to minimize by considering all predictors x1, x2, . . . , xp. We
consider also all possible values of s for each predictor. These values could be
determined by randomly assigned numbers or by starting at the midpoint and
then proceed till we find an optimal value.

For any j and s, we define the pair of half-planes where yR1 is the mean
response for the training observations in R1(j, s), and yR2 is the mean response
for the training observations in R2(j, s).

Finding the values of j and s that minimize the above equation can be done
quite quickly, especially when the number of features p is not too large.

Next, we repeat the process, looking for the best predictor and best cutpoint
in order to split the data further so as to minimize the MSE within each of the
resulting regions. However, this time, instead of splitting the entire predictor
space, we split one of the two previously identified regions. We now have
three regions. Again, we look to split one of these three regions further, so
as to minimize the MSE. The process continues until a stopping criterion is
reached; for instance, we may continue until no region contains more than five
observations.

5

Pruning the tree
The above procedure is rather straightforward, but leads often to overfitting and
unnecessarily large and complicated trees. The basic idea is to grow a large tree
T0 and then prune it back in order to obtain a subtree. A smaller tree with fewer
splits (fewer regions) can lead to smaller variance and better interpretation at
the cost of a little more bias.

The so-called Cost complexity pruning algorithm gives us a way to do just
this. Rather than considering every possible subtree, we consider a sequence of
trees indexed by a nonnegative tuning parameter α.

Cost complexity pruning
For each value of α there corresponds a subtree T ∈ T0 such that

T∑
m=1

∑
i:xi∈Rm

(yi − yRm
)2 + αT ,

is as small as possible. Here T is the number of terminal nodes of the tree T
, Rm is the rectangle (i.e. the subset of predictor space) corresponding to the
m-th terminal node.

The tuning parameter α controls a trade-off between the subtree’s com-
plexity and its fit to the training data. When α = 0, then the subtree T will
simply equal T0, because then the above equation just measures the training
error. However, as α increases, there is a price to pay for having a tree with many
terminal nodes. The above equation will tend to be minimized for a smaller
subtree.

It turns out that as we increase α from zero branches get pruned from the
tree in a nested and predictable fashion, so obtaining the whole sequence of
subtrees as a function of α is easy. We can select a value of α using a validation
set or using cross-validation. We then return to the full data set and obtain the
subtree corresponding to α.

Schematic Regression Procedure
Building a Regression Tree.

1. Use recursive binary splitting to grow a large tree on the training data,
stopping only when each terminal node has fewer than some minimum
number of observations.

2. Apply cost complexity pruning to the large tree in order to obtain a
sequence of best subtrees, as a function of α.

3. Use for example K-fold cross-validation to choose α. Divide the training
observations into K folds. For each k = 1, 2, . . . ,K we:

• repeat steps 1 and 2 on all but the k-th fold of the training data.

6

• Then we valuate the mean squared prediction error on the data in
the left-out k-th fold, as a function of α.

• Finally we average the results for each value of α, and pick α to
minimize the average error.

4. Return the subtree from Step 2 that corresponds to the chosen value of α.

A Classification Tree
A classification tree is very similar to a regression tree, except that it is used to
predict a qualitative response rather than a quantitative one. Recall that for a
regression tree, the predicted response for an observation is given by the mean
response of the training observations that belong to the same terminal node.
In contrast, for a classification tree, we predict that each observation belongs
to the most commonly occurring class of training observations in the region to
which it belongs. In interpreting the results of a classification tree, we are often
interested not only in the class prediction corresponding to a particular terminal
node region, but also in the class proportions among the training observations
that fall into that region.

Growing a classification tree
The task of growing a classification tree is quite similar to the task of growing a
regression tree. Just as in the regression setting, we use recursive binary splitting
to grow a classification tree. However, in the classification setting, the MSE
cannot be used as a criterion for making the binary splits. A natural alternative
to MSE is the classification error rate. Since we plan to assign an observation
in a given region to the most commonly occurring error rate class of training
observations in that region, the classification error rate is simply the fraction of
the training observations in that region that do not belong to the most common
class.

When building a classification tree, either the Gini index or the entropy
are typically used to evaluate the quality of a particular split, since these two
approaches are more sensitive to node purity than is the classification error rate.

Classification tree, how to split nodes
If our targets are the outcome of a classification process that takes for example
k = 1, 2, . . . ,K values, the only thing we need to think of is to set up the splitting
criteria for each node.

We define a PDF pmk that represents the number of observations of a class
k in a region Rm with Nm observations. We represent this likelihood function
in terms of the proportion I(yi = k) of observations of this class in the region
Rm as

7

pmk = 1
Nm

∑
xi∈Rm

I(yi = k).

We let pmk represent the majority class of observations in region m. The
three most common ways of splitting a node are given by

• Misclassification error

pmk = 1
Nm

∑
xi∈Rm

I(yi 6= k) = 1− pmk.

• Gini index g

g =
K∑
k=1

pmk(1− pmk).

• Information entropy or just entropy s

s = −
K∑
k=1

pmk log pmk.

Visualizing the Tree, Classification
import os
from sklearn.datasets import load_breast_cancer
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from sklearn.tree import export_graphviz

from IPython.display import Image
from pydot import graph_from_dot_data
import pandas as pd
import numpy as np

cancer = load_breast_cancer()
X = pd.DataFrame(cancer.data, columns=cancer.feature_names)
print(X)
y = pd.Categorical.from_codes(cancer.target, cancer.target_names)
y = pd.get_dummies(y)
print(y)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
tree_clf = DecisionTreeClassifier(max_depth=5)
tree_clf.fit(X_train, y_train)

export_graphviz(
tree_clf,
out_file="DataFiles/cancer.dot",
feature_names=cancer.feature_names,
class_names=cancer.target_names,
rounded=True,
filled=True

)
cmd = ’dot -Tpng DataFiles/cancer.dot -o DataFiles/cancer.png’
os.system(cmd)

8

Visualizing the Tree, The Moons
Common imports
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import make_moons
from sklearn.tree import export_graphviz
from pydot import graph_from_dot_data
import pandas as pd
import os

np.random.seed(42)
X, y = make_moons(n_samples=100, noise=0.25, random_state=53)
X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=0)
tree_clf = DecisionTreeClassifier(max_depth=5)
tree_clf.fit(X_train, y_train)

export_graphviz(
tree_clf,
out_file="DataFiles/moons.dot",
rounded=True,
filled=True

)
cmd = ’dot -Tpng DataFiles/moons.dot -o DataFiles/moons.png’
os.system(cmd)

Algorithms for Setting up Decision Trees
Two algorithms stand out in the set up of decision trees:

1. The CART (Classification And Regression Tree) algorithm for both classi-
fication and regression

2. The ID3 algorithm based on the computation of the information gain for
classification

We discuss both algorithms with applications here. The popular library Scikit-
Learn uses the CART algorithm. For classification problems you can use either
the gini index or the entropy to split a tree in two branches.

The CART algorithm for Classification
For classification, the CART algorithm splits the data set in two subsets using a
single feature k and a threshold tk. This could be for example a threshold set
by a number below a certain circumference of a malign tumor.

How do we find these two quantities? We search for the pair (k, tk) that
produces the purest subset using for example the gini factor G. The cost function
it tries to minimize is then

C(k, tk) = mleft

m
Gleft + mright

m
Gright,

where Gleft/right measures the impurity of the left/right subset and mleft/right is
the number of instances in the left/right subset

9

Once it has successfully split the training set in two, it splits the subsets
using the same logic, then the subsubsets and so on, recursively. It stops
recursing once it reaches the maximum depth (defined by the max_depth
hyperparameter), or if it cannot find a split that will reduce impurity. A
few other hyperparameters control additional stopping conditions such as the
min_samples_split, min_samples_leaf , min_weight_fraction_leaf , and
max_leaf_nodes.

The CART algorithm for Regression
The CART algorithm for regression works is similar to the one for classification
except that instead of trying to split the training set in a way that minimizes say
the gini or entropy impurity, it now tries to split the training set in a way that
minimizes our well-known mean-squared error (MSE). The cost function is now

C(k, tk) = mleft

m
MSEleft + mright

m
MSEright.

Here the MSE for a specific node is defined as

MSEnode = 1
mnode

∑
i∈node

(ynode − yi)2,

with
ynode = 1

mnode

∑
i∈node

yi,

the mean value of all observations in a specific node.
Without any regularization, the regression task for decision trees, just like

for classification tasks, is prone to overfitting.

Computing the Gini index
The example we will look at is a classical one in many Machine Learning
applications. Based on various meteorological features, we have several so-called
attributes which decide whether we at the end will do some outdoor activity
like skiing, going for a bike ride etc etc. The table here contains the feautures
outlook, temperature, humidity and wind. The target or output is whether
we ride (True=1) or whether we do something else that day (False=0). The
attributes for each feature are then sunny, overcast and rain for the outlook,
hot, cold and mild for temperature, high and normal for humidity and weak and
strong for wind.

The table here summarizes the various attributes and

10

Day Outlook Temperature Humidity Wind Ride
1 Sunny Hot High Weak 0
2 Sunny Hot High Strong 1
3 Overcast Hot High Weak 1
4 Rain Mild High Weak 1
5 Rain Cool Normal Weak 1
6 Rain Cool Normal Strong 0
7 Overcast Cool Normal Strong 1
8 Sunny Mild High Weak 0
9 Sunny Cool Normal Weak 1
10 Rain Mild Normal Weak 1
11 Sunny Mild Normal Strong 1
12 Overcast Mild High Strong 1
13 Overcast Hot Normal Weak 1
14 Rain Mild High Strong 0

Simple Python Code to read in Data and perform Classifi-
cation

Common imports
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.tree import export_graphviz
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
from IPython.display import Image
from pydot import graph_from_dot_data
import os

Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"

if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)

if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)

def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format=’png’)

11

infile = open(data_path("rideclass.csv"),’r’)

Read the experimental data with Pandas
from IPython.display import display
ridedata = pd.read_csv(infile,names = (’Outlook’,’Temperature’,’Humidity’,’Wind’,’Ride’))
ridedata = pd.DataFrame(ridedata)

Features and targets
X = ridedata.loc[:, ridedata.columns != ’Ride’].values
y = ridedata.loc[:, ridedata.columns == ’Ride’].values

Create the encoder.
encoder = OneHotEncoder(handle_unknown="ignore")
Assume for simplicity all features are categorical.
encoder.fit(X)
Apply the encoder.
X = encoder.transform(X)
print(X)
Then do a Classification tree
tree_clf = DecisionTreeClassifier(max_depth=2)
tree_clf.fit(X, y)
print("Train set accuracy with Decision Tree: {:.2f}".format(tree_clf.score(X,y)))
#transfer to a decision tree graph
export_graphviz(

tree_clf,
out_file="DataFiles/ride.dot",
rounded=True,
filled=True

)
cmd = ’dot -Tpng DataFiles/cancer.dot -o DataFiles/cancer.png’
os.system(cmd)

Computing the Gini Factor
The above functions (gini, entropy and misclassification error) are important
components of the so-called CART algorithm. We will discuss this algorithm
below after we have discussed the information gain algorithm ID3.

In the example here we have converted all our attributes into numerical
values 0, 1, 2 etc.

Split a dataset based on an attribute and an attribute value
def test_split(index, value, dataset):

left, right = list(), list()
for row in dataset:

if row[index] < value:
left.append(row)

else:
right.append(row)

return left, right

Calculate the Gini index for a split dataset
def gini_index(groups, classes):

count all samples at split point
n_instances = float(sum([len(group) for group in groups]))
sum weighted Gini index for each group
gini = 0.0
for group in groups:

12

size = float(len(group))
avoid divide by zero
if size == 0:

continue
score = 0.0
score the group based on the score for each class
for class_val in classes:

p = [row[-1] for row in group].count(class_val) / size
score += p * p

weight the group score by its relative size
gini += (1.0 - score) * (size / n_instances)

return gini

Select the best split point for a dataset
def get_split(dataset):

class_values = list(set(row[-1] for row in dataset))
b_index, b_value, b_score, b_groups = 999, 999, 999, None
for index in range(len(dataset[0])-1):

for row in dataset:
groups = test_split(index, row[index], dataset)
gini = gini_index(groups, class_values)
print(’X%d < %.3f Gini=%.3f’ % ((index+1), row[index], gini))
if gini < b_score:

b_index, b_value, b_score, b_groups = index, row[index], gini, groups
return {’index’:b_index, ’value’:b_value, ’groups’:b_groups}

dataset = [[0,0,0,0,0],
[0,0,0,1,1],
[1,0,0,0,1],
[2,1,0,0,1],
[2,2,1,0,1],
[2,2,1,1,0],
[1,2,1,1,1],
[0,1,0,0,0],
[0,2,1,0,1],
[2,1,1,0,1],
[0,1,1,1,1],
[1,1,0,1,1],
[1,0,1,0,1],
[2,1,0,1,0]]

split = get_split(dataset)
print(’Split: [X%d < %.3f]’ % ((split[’index’]+1), split[’value’]))

Entropy and the ID3 algorithm
ID3, learns decision trees by constructing them topdown, beginning with the
question which attribute should be tested at the root of the tree?

1. Each instance attribute is evaluated using a statistical test to determine
how well it alone classifies the training examples.

2. The best attribute is selected and used as the test at the root node of the
tree.

3. A descendant of the root node is then created for each possible value of
this attribute.

13

4. Training examples are sorted to the appropriate descendant node.

5. The entire process is then repeated using the training examples associated
with each descendant node to select the best attribute to test at that point
in the tree.

6. This forms a greedy search for an acceptable decision tree, in which the
algorithm never backtracks to reconsider earlier choices.

The ID3 algorithm selects, which attribute to test at each node in the tree.
We would like to select the attribute that is most useful for classifying

examples.
What is a good quantitative measure of the worth of an attribute?
Information gain measures how well a given attribute separates the training

examples according to their target classification.
The ID3 algorithm uses this information gain measure to select among the

candidate attributes at each step while growing the tree.

Cancer Data again now with Decision Trees and other Meth-
ods

import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier

Load the data
cancer = load_breast_cancer()

X_train, X_test, y_train, y_test = train_test_split(cancer.data,cancer.target,random_state=0)
print(X_train.shape)
print(X_test.shape)
Logistic Regression
logreg = LogisticRegression(solver=’lbfgs’)
logreg.fit(X_train, y_train)
print("Test set accuracy with Logistic Regression: {:.2f}".format(logreg.score(X_test,y_test)))
Support vector machine
svm = SVC(gamma=’auto’, C=100)
svm.fit(X_train, y_train)
print("Test set accuracy with SVM: {:.2f}".format(svm.score(X_test,y_test)))
Decision Trees
deep_tree_clf = DecisionTreeClassifier(max_depth=None)
deep_tree_clf.fit(X_train, y_train)
print("Test set accuracy with Decision Trees: {:.2f}".format(deep_tree_clf.score(X_test,y_test)))
#now scale the data
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)
Logistic Regression
logreg.fit(X_train_scaled, y_train)

14

print("Test set accuracy Logistic Regression with scaled data: {:.2f}".format(logreg.score(X_test_scaled,y_test)))
Support Vector Machine
svm.fit(X_train_scaled, y_train)
print("Test set accuracy SVM with scaled data: {:.2f}".format(logreg.score(X_test_scaled,y_test)))
Decision Trees
deep_tree_clf.fit(X_train_scaled, y_train)
print("Test set accuracy with Decision Trees and scaled data: {:.2f}".format(deep_tree_clf.score(X_test_scaled,y_test)))

Pros and cons of trees, pros
• White box, easy to interpret model. Some people believe that decision
trees more closely mirror human decision-making than do the regression
and classification approaches discussed earlier (think of support vector
machines)

• Trees are very easy to explain to people. In fact, they are even easier to
explain than linear regression!

• No feature normalization needed

• Tree models can handle both continuous and categorical data (Classification
and Regression Trees)

• Can model nonlinear relationships

• Can model interactions between the different descriptive features

• Trees can be displayed graphically, and are easily interpreted even by a
non-expert (especially if they are small)

Disadvantages
• Unfortunately, trees generally do not have the same level of predictive
accuracy as some of the other regression and classification approaches

• If continuous features are used the tree may become quite large and hence
less interpretable

• Decision trees are prone to overfit the training data and hence do not well
generalize the data if no stopping criteria or improvements like pruning,
boosting or bagging are implemented

• Small changes in the data may lead to a completely different tree. This
issue can be addressed by using ensemble methods like bagging, boosting
or random forests

• Unbalanced datasets where some target feature values occur much more fre-
quently than others may lead to biased trees since the frequently occurring
feature values are preferred over the less frequently occurring ones.

15

• If the number of features is relatively large (high dimensional) and the
number of instances is relatively low, the tree might overfit the data

• Features with many levels may be preferred over features with less levels
since for them it is more easy to split the dataset such that the sub datasets
only contain pure target feature values. This issue can be addressed by
preferring for instance the information gain ratio as splitting criteria over
information gain

However, by aggregating many decision trees, using methods like bagging, random
forests, and boosting, the predictive performance of trees can be substantially
improved.

Ensemble Methods: From a Single Tree to Many Trees and
Extreme Boosting, Meet the Jungle of Methods
As stated above and seen in many of the examples discussed here about a single
decision tree, we often end up overfitting our training data. This normally means
that we have a high variance. Can we reduce the variance of a statistical learning
method?

This leads us to a set of different methods that can combine different machine
learning algorithms or just use one of them to construct forests and jungles of
trees, homogeneous ones or heterogenous ones. These methods are recognized
by different names which we will try to explain here. These are

1. Voting classifiers

2. Bagging and Pasting

3. Random forests

4. Boosting methods, from adaptive to Extreme Gradient Boosting (XGBoost)

We discuss these methods here.

16

An Overview of Ensemble Methods

Bagging
The plain decision trees suffer from high variance. This means that if we split
the training data into two parts at random, and fit a decision tree to both halves,
the results that we get could be quite different. In contrast, a procedure with
low variance will yield similar results if applied repeatedly to distinct data sets;
linear regression tends to have low variance, if the ratio of n to p is moderately
large.

Bootstrap aggregation, or just bagging, is a general-purpose procedure
for reducing the variance of a statistical learning method.

More bagging
Bagging typically results in improved accuracy over prediction using a single
tree. Unfortunately, however, it can be difficult to interpret the resulting model.
Recall that one of the advantages of decision trees is the attractive and easily
interpreted diagram that results.

However, when we bag a large number of trees, it is no longer possible to
represent the resulting statistical learning procedure using a single tree, and it
is no longer clear which variables are most important to the procedure. Thus,
bagging improves prediction accuracy at the expense of interpretability. Although
the collection of bagged trees is much more difficult to interpret than a single tree,
one can obtain an overall summary of the importance of each predictor using the
MSE (for bagging regression trees) or the Gini index (for bagging classification
trees). In the case of bagging regression trees, we can record the total amount
that the MSE is decreased due to splits over a given predictor, averaged over all

17

B possible trees. A large value indicates an important predictor. Similarly, in
the context of bagging classification trees, we can add up the total amount that
the Gini index is decreased by splits over a given predictor, averaged over all B
trees.

Making your own Bootstrap: Changing the Level of the
Decision Tree
Let us bring up our good old boostrap example from the linear regression lectures.
We change the linerar regression algorithm with a decision tree wth different
depths and perform a bootstrap aggregate (in this case we perform as many
bootstraps as data points n).

import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.utils import resample
from sklearn.tree import DecisionTreeRegressor

n = 100
n_boostraps = 100
maxdepth = 8

Make data set.
x = np.linspace(-3, 3, n).reshape(-1, 1)
y = np.exp(-x**2) + 1.5 * np.exp(-(x-2)**2)+ np.random.normal(0, 0.1, x.shape)
error = np.zeros(maxdepth)
bias = np.zeros(maxdepth)
variance = np.zeros(maxdepth)
polydegree = np.zeros(maxdepth)
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2)

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

we produce a simple tree first as benchmark
simpletree = DecisionTreeRegressor(max_depth=3)
simpletree.fit(X_train_scaled, y_train)
simpleprediction = simpletree.predict(X_test_scaled)
for degree in range(1,maxdepth):

model = DecisionTreeRegressor(max_depth=degree)
y_pred = np.empty((y_test.shape[0], n_boostraps))
for i in range(n_boostraps):

x_, y_ = resample(X_train_scaled, y_train)
model.fit(x_, y_)
y_pred[:, i] = model.predict(X_test_scaled)#.ravel()

polydegree[degree] = degree
error[degree] = np.mean(np.mean((y_test - y_pred)**2, axis=1, keepdims=True))
bias[degree] = np.mean((y_test - np.mean(y_pred, axis=1, keepdims=True))**2)
variance[degree] = np.mean(np.var(y_pred, axis=1, keepdims=True))
print(’Polynomial degree:’, degree)
print(’Error:’, error[degree])

18

print(’Bias^2:’, bias[degree])
print(’Var:’, variance[degree])
print(’{} >= {} + {} = {}’.format(error[degree], bias[degree], variance[degree], bias[degree]+variance[degree]))

mse_simpletree = np.mean(np.mean((y_test - simpleprediction)**2))
print(mse_simpletree)
plt.xlim(1,maxdepth)
plt.plot(polydegree, error, label=’MSE’)
plt.plot(polydegree, bias, label=’bias’)
plt.plot(polydegree, variance, label=’Variance’)
plt.legend()
save_fig("baggingboot")
plt.show()

Random forests
Random forests provide an improvement over bagged trees by way of a small
tweak that decorrelates the trees.

As in bagging, we build a number of decision trees on bootstrapped training
samples. But when building these decision trees, each time a split in a tree
is considered, a random sample of m predictors is chosen as split candidates
from the full set of p predictors. The split is allowed to use only one of those m
predictors.

A fresh sample of m predictors is taken at each split, and typically we choose

m ≈ √p.

In building a random forest, at each split in the tree, the algorithm is not
even allowed to consider a majority of the available predictors.

The reason for this is rather clever. Suppose that there is one very strong
predictor in the data set, along with a number of other moderately strong
predictors. Then in the collection of bagged variable importance random forest
trees, most or all of the trees will use this strong predictor in the top split.
Consequently, all of the bagged trees will look quite similar to each other. Hence
the predictions from the bagged trees will be highly correlated. Unfortunately,
averaging many highly correlated quantities does not lead to as large of a
reduction in variance as averaging many uncorrelated quantities. In particular,
this means that bagging will not lead to a substantial reduction in variance over
a single tree in this setting.

Random Forest Algorithm
The algorithm described here can be applied to both classification and regression
problems.

We will grow of forest of say B trees.

1. For b = 1 : B

• Draw a bootstrap sample of from the training data organized in our
X matrix.

19

• We grow then a random forest tree Tb based on the bootstrapped
data by repeating the steps outlined till we reach the maximum node
size is reached
(a) we selectm ≤ p variables at random from the p predictors/features
(b) pick the best split point among the m features using either the

CART algorithm or the ID3 for classification and create a new
node

(c) split the node into daughter nodes

2. Output then the ensemble of trees {Tb}B1 and make predictions for either
a regression type of problem or a classification type of problem.

Random Forests Compared with other Methods on the Can-
cer Data

import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier

Load the data
cancer = load_breast_cancer()

X_train, X_test, y_train, y_test = train_test_split(cancer.data,cancer.target,random_state=0)
print(X_train.shape)
print(X_test.shape)
Logistic Regression
logreg = LogisticRegression(solver=’lbfgs’)
logreg.fit(X_train, y_train)
print("Test set accuracy with Logistic Regression: {:.2f}".format(logreg.score(X_test,y_test)))
Support vector machine
svm = SVC(gamma=’auto’, C=100)
svm.fit(X_train, y_train)
print("Test set accuracy with SVM: {:.2f}".format(svm.score(X_test,y_test)))
Decision Trees
deep_tree_clf = DecisionTreeClassifier(max_depth=None)
deep_tree_clf.fit(X_train, y_train)
print("Test set accuracy with Decision Trees: {:.2f}".format(deep_tree_clf.score(X_test,y_test)))
#now scale the data
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)
Logistic Regression
logreg.fit(X_train_scaled, y_train)
print("Test set accuracy Logistic Regression with scaled data: {:.2f}".format(logreg.score(X_test_scaled,y_test)))
Support Vector Machine
svm.fit(X_train_scaled, y_train)
print("Test set accuracy SVM with scaled data: {:.2f}".format(logreg.score(X_test_scaled,y_test)))
Decision Trees

20

deep_tree_clf.fit(X_train_scaled, y_train)
print("Test set accuracy with Decision Trees and scaled data: {:.2f}".format(deep_tree_clf.score(X_test_scaled,y_test)))

from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import cross_validate
Data set not specificied
#Instantiate the model with 500 trees and entropy as splitting criteria
Random_Forest_model = RandomForestClassifier(n_estimators=500,criterion="entropy")
Random_Forest_model.fit(X_train_scaled, y_train)
#Cross validation
accuracy = cross_validate(Random_Forest_model,X_test_scaled,y_test,cv=10)[’test_score’]
print(accuracy)
print("Test set accuracy with Random Forests and scaled data: {:.2f}".format(Random_Forest_model.score(X_test_scaled,y_test)))

import scikitplot as skplt
y_pred = Random_Forest_model.predict(X_test_scaled)
skplt.metrics.plot_confusion_matrix(y_test, y_pred, normalize=True)
plt.show()
y_probas = Random_Forest_model.predict_proba(X_test_scaled)
skplt.metrics.plot_roc(y_test, y_probas)
plt.show()
skplt.metrics.plot_cumulative_gain(y_test, y_probas)
plt.show()

Compare Bagging on Trees with Random Forests
bag_clf = BaggingClassifier(

DecisionTreeClassifier(splitter="random", max_leaf_nodes=16, random_state=42),
n_estimators=500, max_samples=1.0, bootstrap=True, n_jobs=-1, random_state=42)

bag_clf.fit(X_train, y_train)
y_pred = bag_clf.predict(X_test)
from sklearn.ensemble import RandomForestClassifier
rnd_clf = RandomForestClassifier(n_estimators=500, max_leaf_nodes=16, n_jobs=-1, random_state=42)
rnd_clf.fit(X_train, y_train)
y_pred_rf = rnd_clf.predict(X_test)
np.sum(y_pred == y_pred_rf) / len(y_pred)

Boosting, a Bird’s Eye View
The basic idea is to combine weak classifiers in order to create a good classifier.
With a weak classifier we often intend a classifier which produces results which
are only slightly better than we would get by random guesses.

This is done by applying in an iterative way a weak (or a standard classifier
like decision trees) to modify the data. In each iteration we emphasize those
observations which are misclassified by weighting them with a factor.

What is boosting? Additive Modelling/Iterative Fitting
Boosting is a way of fitting an additive expansion in a set of elementary basis
functions like for example some simple polynomials. Assume for example that

21

we have a function

fM (x) =
M∑
i=1

βmb(x; γm),

where βm are the expansion parameters to be determined in a minimization
process and b(x; γm) are some simple functions of the multivariable parameter x
which is characterized by the parameters γm.

As an example, consider the Sigmoid function we used in logistic regression.
In that case, we can translate the function b(x; γm) into the Sigmoid function

σ(t) = 1
1 + exp (−t) ,

where t = γ0 + γ1x and the parameters γ0 and γ1 were determined by the
Logistic Regression fitting algorithm.

As another example, consider the cost function we defined for linear regression

C(y,f) = 1
n

n−1∑
i=0

(yi − f(xi))2.

In this case the function f(x) was replaced by the design matrix X and the
unknown linear regression parameters β, that is f = Xβ. In linear regression
we can simply invert a matrix and obtain the parameters β by

β =
(
XTX

)−1
XTy.

In iterative fitting or additive modeling, we minimize the cost function with
respect to the parameters βm and γm.

Iterative Fitting, Regression and Squared-error Cost Func-
tion
The way we proceed is as follows (here we specialize to the squared-error cost
function)

1. Establish a cost function, here C(y,f) = 1
n

∑n−1
i=0 (yi − fM (xi))2 with

fM (x) =
∑M
i=1 βmb(x; γm).

2. Initialize with a guess f0(x). It could be one or even zero or some random
numbers.

3. For m = 1 : M

(a) minimize
∑n−1
i=0 (yi − fm−1(xi)− βb(x; γ))2 wrt γ and β

(b) This gives the optimal values βm and γm
(c) Determine then the new values fm(x) = fm−1(x) + βmb(x; γm)

We could use any of the algorithms we have discussed till now. If we use trees, γ
parameterizes the split variables and split points at the internal nodes, and the
predictions at the terminal nodes.

22

Squared-Error Example and Iterative Fitting
To better understand what happens, let us develop the steps for the iterative
fitting using the above squared error function.

For simplicity we assume also that our functions b(x; γ) = 1 + γx.
This means that for every iteration m, we need to optimize

(βm, γm) = argminβ,γ
n−1∑
i=0

(yi−fm−1(xi)−βb(x; γ))2 =
n−1∑
i=0

(yi−fm−1(xi)−β(1+γxi))2.

We start our iteration by simply setting f0(x) = 0. Taking the derivatives
with respect to β and γ we obtain

∂C
∂β

= −2
∑
i

(1 + γxi)(yi − β(1 + γxi)) = 0,

and
∂C
∂γ

= −2
∑
i

βxi(yi − β(1 + γxi)) = 0.

We can then rewrite these equations as (defining w = e+ γx) with e being the
unit vector)

γwT (y − βγw) = 0,

which gives us β = wTy/(wTw). Similarly we have

βγxT (y − β(1 + γx)) = 0,

which leads to γ = (xTy − βxTe)/(βxTx). Inserting for β gives us an
equation for γ. This is a non-linear equation in the unknown γ and has to be
solved numerically.

The solution to these two equations gives us in turn β1 and γ1 leading to the
new expression for f1(x) as f1(x) = β1(1 + γ1x). Doing this M times results in
our final estimate for the function f .

Iterative Fitting, Classification and AdaBoost
Let us consider a binary classification problem with two outcomes yi ∈ {−1, 1}
and i = 0, 1, 2, . . . , n − 1 as our set of observations. We define a classification
function G(x) which produces a prediction taking one or the other of the two
values {−1, 1}.

The error rate of the training sample is then

err = 1
n

n−1∑
i=0

I(yi 6= G(xi)).

The iterative procedure starts with defining a weak classifier whose error
rate is barely better than random guessing. The iterative procedure in boosting

23

is to sequentially apply a weak classification algorithm to repeatedly modified
versions of the data producing a sequence of weak classifiers Gm(x).

Here we will express our function f(x) in terms of G(x). That is

fM (x) =
M∑
i=1

βmb(x; γm),

will be a function of

GM (x) = sign
M∑
i=1

αmGm(x).

Adaptive Boosting, AdaBoost
In our iterative procedure we define thus

fm(x) = fm−1(x) + βmGm(x).

The simplest possible cost function which leads (also simple from a compu-
tational point of view) to the AdaBoost algorithm is the exponential cost/loss
function defined as

C(y,f) =
n−1∑
i=0

exp (−yi(fm−1(xi) + βG(xi)).

We optimize β and G for each value of m = 1 : M as we did in the regression
case. This is normally done in two steps. Let us however first rewrite the cost
function as

C(y,f) =
n−1∑
i=0

wmi exp (−yiβG(xi)),

where we have defined wmi = exp (−yifm−1(xi)).

Building up AdaBoost
First, for any β > 0, we optimize G by setting

Gm(x) = sign
n−1∑
i=0

wmi I(yi 6= G(xi)),

which is the classifier that minimizes the weighted error rate in predicting y.
We can do this by rewriting

exp−(β)
∑

yi=G(xi)

wmi + exp (β)
∑

yi 6=G(xi)

wmi ,

24

which can be rewritten as

(exp (β)− exp−(β))
n−1∑
i=0

wmi I(yi 6= G(xi)) + exp (−β)
n−1∑
i=0

wmi = 0,

which leads to
βm = 1

2 log 1− err
err ,

where we have redefined the error as

errm = 1
n

∑n−1
i=0 w

m
i I(yi 6= G(xi)∑n−1
i=0 w

m
i

,

which leads to an update of

fm(x) = fm−1(x) + βmGm(x).

This leads to the new weights

wm+1
i = wmi exp (−yiβmGm(xi))

Adaptive boosting: AdaBoost, Basic Algorithm
The algorithm here is rather straightforward. Assume that our weak classifier is
a decision tree and we consider a binary set of outputs with yi ∈ {−1, 1} and
i = 0, 1, 2, . . . , n − 1 as our set of observations. Our design matrix is given in
terms of the feature/predictor vectors X = [x0x1xp−1]. Finally, we define also
a classifier determined by our data via a function G(x). This function tells us
how well we are able to classify our outputs/targets y.

We have already defined the misclassification error err as

err = 1
n

n−1∑
i=0

I(yi 6= G(xi)),

where the function I() is one if we misclassify and zero if we classify correctly.

Basic Steps of AdaBoost
With the above definitions we are now ready to set up the algorithm for AdaBoost.
The basic idea is to set up weights which will be used to scale the correctly
classified and the misclassified cases.

1. We start by initializing all weights to wi = 1/n, with i = 0, 1, 2, . . . n− 1.
It is easy to see that we must have

∑n−1
i=0 wi = 1.

2. We rewrite the misclassification error as

errm =
∑n−1
i=0 w

m
i I(yi 6= G(xi))∑n−1
i=0 wi

,

25

1. Then we start looping over all attempts at classifying, namely we start
an iterative process for m = 1 : M , where M is the final number of
classifications. Our given classifier could for example be a plain decision
tree.

(a) Fit then a given classifier to the training set using the weights wi.
(b) Compute then err and figure out which events are classified properly

and which are classified wrongly.
(c) Define a quantity αm = log (1− errm)/errm
(d) Set the new weights to wi = wi × exp (αmI(yi 6= G(xi).

2. Compute the new classifier G(x) =
∑n−1
i=0 αmI(yi 6= G(xi).

For the iterations with m ≤ 2 the weights are modified individually at each
steps. The observations which were misclassified at iteration m−1 have a weight
which is larger than those which were classified properly. As this proceeds, the
observations which were difficult to classifiy correctly are given a larger influence.
Each new classification step m is then forced to concentrate on those observations
that are missed in the previous iterations.

AdaBoost Examples
Using Scikit-Learn it is easy to apply the adaptive boosting algorithm, as done
here.

from sklearn.ensemble import AdaBoostClassifier

ada_clf = AdaBoostClassifier(
DecisionTreeClassifier(max_depth=1), n_estimators=200,
algorithm="SAMME.R", learning_rate=0.5, random_state=42)

ada_clf.fit(X_train, y_train)

from sklearn.ensemble import AdaBoostClassifier

ada_clf = AdaBoostClassifier(
DecisionTreeClassifier(max_depth=1), n_estimators=200,
algorithm="SAMME.R", learning_rate=0.5, random_state=42)

ada_clf.fit(X_train_scaled, y_train)
y_pred = ada_clf.predict(X_test_scaled)
skplt.metrics.plot_confusion_matrix(y_test, y_pred, normalize=True)
plt.show()
y_probas = ada_clf.predict_proba(X_test_scaled)
skplt.metrics.plot_roc(y_test, y_probas)
plt.show()
skplt.metrics.plot_cumulative_gain(y_test, y_probas)
plt.show()

AdaBoost for Regression
Here we present Drucker’s AdaBoost tailored for regression.

26

https://pdfs.semanticscholar.org/8d49/e2dedb817f2c3330e74b63c5fc86d2399ce3.pdf

In bagging, each training example is equally likely to be picked. In boosting,
the probability of a particular example being in the training set of a particular
machine depends on the performance of the prior machines on that example.
The following is a modification of Adaboost by Drucker.

Start by selecting a set of training data n and assign to each entry a weight
wi = 1 for i = 1, 2, . . . , n. As we have done earlier, we could pick say 80% of the
data set for training. The algorithm runs as follows:

1. We define the probability that the training sample i is in the set by
pi = wi/

∑
i wi. We pick n samples (with replacement) to form our

training set. We pick a number uniformly in the range [0,
∑
i wi].

2. We choose then a regression machine (for example plain linear regression
or a simple decision tree). A given regression machine makes then a
hypothesis.

3. Using every member of the training set with the chosen regression machine
we obtain then a prediction ỹi.

4. We calculate then the loss function Li for each training sample. We can
use various types of loss function as long as we have a value

Li ∈ [0, 1].

Gradient boosting: Basics with Steepest Descent
Gradient boosting is again a similar technique to Adaptive boosting, it combines
so-called weak classifiers or regressors into a strong method via a series of
iterations.

In order to understand the method, let us illustrate its basics by bringing
back the essential steps in linear regression, where our cost function was the
least squares function.

The Squared-Error again! Steepest Descent
We start again with our cost function C(ymf) =

∑n−1
i=0 L(yi, f(xi)) where we

want to minimize This means that for every iteration, we need to optimize

(f̂) = argminf

n−1∑
i=0

(yi − f(xi))2.

We define a real function hm(x) that defines our final function fM (x) as

fM (x) =
M∑
m=0

hm(x).

27

In the steepest decent approach we approximate hm(x) = −ρmgm(x), where
ρm is a scalar and gm(x) the gradient defined as

gm(xi) =
[
∂L(yi, f(xi))

∂f(xi)

]
f(xi)=fm−1(xi)

.

With the new gradient we can update fm(x) = fm−1(x)−ρmgm(x). Using the
above squared-error function we see that the gradient is gm(xi) = −2(yi−f(xi)).

Choosing f0(x) = 0 we obtain gm(x) = −2yi and inserting this into the
minimization problem for the cost function we have

(ρ1) = argminρ
n−1∑
i=0

(yi + 2ρyi)2.

Steepest Descent Example
Optimizing with respect to ρ we obtain (taking the derivative) that ρ1 = −1/2.
We have then that

f1(x) = f0(x)− ρ1g1(x) = −yi.
We can then proceed and compute

g2(xi) =
[
∂L(yi, f(xi))

∂f(xi)

]
f(xi)=f1(xi)=yi

= −4yi,

and find a new value for ρ2 = −1/2 and continue till we have reached m = M .
We can modify the steepest descent method, or steepest boosting, by introducing
what is called gradient boosting.

Gradient Boosting, algorithm
Suppose we have a cost function C(f) =

∑n−1
i=0 L(yi, f(xi)) where yi is our target

and f(xi) the function which is meant to model yi. The above cost function
could be our standard squared-error function

C(y,f) =
n−1∑
i=0

(yi − f(xi))2.

The way we proceed in an iterative fashion is to
1. Initialize our estimate f0(x).

2. For m = 1 : M , we

(a) compute the negative gradient vector um = −∂C(y,f)/∂f(x) at
f(x) = fm−1(x);

(b) fit the so-called base-learner to the negative gradient hm(um, x);
(c) update the estimate fm(x) = fm−1(x) + νhm(um, x);

3. The final estimate is then fM (x) =
∑M
m=1 νhm(um, x).

28

Gradient Boosting, Examples of Regression
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.preprocessing import StandardScaler
import scikitplot as skplt
from sklearn.metrics import mean_squared_error

n = 100
maxdegree = 6

Make data set.
x = np.linspace(-3, 3, n).reshape(-1, 1)
y = np.exp(-x**2) + 1.5 * np.exp(-(x-2)**2)+ np.random.normal(0, 0.1, x.shape)

error = np.zeros(maxdegree)
bias = np.zeros(maxdegree)
variance = np.zeros(maxdegree)
polydegree = np.zeros(maxdegree)
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

for degree in range(1,maxdegree):
model = GradientBoostingRegressor(max_depth=degree, n_estimators=100, learning_rate=1.0)
model.fit(X_train_scaled,y_train)
y_pred = model.predict(X_test_scaled)
polydegree[degree] = degree
error[degree] = np.mean(np.mean((y_test - y_pred)**2))
bias[degree] = np.mean((y_test - np.mean(y_pred))**2)
variance[degree] = np.mean(np.var(y_pred))
print(’Max depth:’, degree)
print(’Error:’, error[degree])
print(’Bias^2:’, bias[degree])
print(’Var:’, variance[degree])
print(’{} >= {} + {} = {}’.format(error[degree], bias[degree], variance[degree], bias[degree]+variance[degree]))

plt.xlim(1,maxdegree-1)
plt.plot(polydegree, error, label=’Error’)
plt.plot(polydegree, bias, label=’bias’)
plt.plot(polydegree, variance, label=’Variance’)
plt.legend()
save_fig("gdregression")
plt.show()

Gradient Boosting, Classification Example
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer
import scikitplot as skplt
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import cross_validate

Load the data

29

cancer = load_breast_cancer()

X_train, X_test, y_train, y_test = train_test_split(cancer.data,cancer.target,random_state=0)
print(X_train.shape)
print(X_test.shape)
#now scale the data
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

gd_clf = GradientBoostingClassifier(max_depth=3, n_estimators=100, learning_rate=1.0)
gd_clf.fit(X_train_scaled, y_train)
#Cross validation
accuracy = cross_validate(gd_clf,X_test_scaled,y_test,cv=10)[’test_score’]
print(accuracy)
print("Test set accuracy with Random Forests and scaled data: {:.2f}".format(gd_clf.score(X_test_scaled,y_test)))

import scikitplot as skplt
y_pred = gd_clf.predict(X_test_scaled)
skplt.metrics.plot_confusion_matrix(y_test, y_pred, normalize=True)
save_fig("gdclassiffierconfusion")
plt.show()
y_probas = gd_clf.predict_proba(X_test_scaled)
skplt.metrics.plot_roc(y_test, y_probas)
save_fig("gdclassiffierroc")
plt.show()
skplt.metrics.plot_cumulative_gain(y_test, y_probas)
save_fig("gdclassiffiercgain")
plt.show()

XGBoost: Extreme Gradient Boosting
XGBoost or Extreme Gradient Boosting, is an optimized distributed gradient
boosting library designed to be highly efficient, flexible and portable. It im-
plements machine learning algorithms under the Gradient Boosting framework.
XGBoost provides a parallel tree boosting that solve many data science problems
in a fast and accurate way. See the article by Chen and Guestrin.

The authors design and build a highly scalable end-to-end tree boosting
system. It has a theoretically justified weighted quantile sketch for efficient
proposal calculation. It introduces a novel sparsity-aware algorithm for parallel
tree learning and an effective cache-aware block structure for out-of-core tree
learning.

It is now the algorithm which wins essentially all ML competitions!!!

Regression Case
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
import xgboost as xgb
from sklearn.preprocessing import StandardScaler
import scikitplot as skplt
from sklearn.metrics import mean_squared_error

30

https://github.com/dmlc/xgboost
https://arxiv.org/abs/1603.02754

n = 100
maxdegree = 6

Make data set.
x = np.linspace(-3, 3, n).reshape(-1, 1)
y = np.exp(-x**2) + 1.5 * np.exp(-(x-2)**2)+ np.random.normal(0, 0.1, x.shape)

error = np.zeros(maxdegree)
bias = np.zeros(maxdegree)
variance = np.zeros(maxdegree)
polydegree = np.zeros(maxdegree)
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

for degree in range(maxdegree):
model = xgb.XGBRegressor(objective =’reg:squarederror’, colsaobjective =’reg:squarederror’, colsample_bytree = 0.3, learning_rate = 0.1,max_depth = degree, alpha = 10, n_estimators = 200)

model.fit(X_train_scaled,y_train)
y_pred = model.predict(X_test_scaled)
polydegree[degree] = degree
error[degree] = np.mean(np.mean((y_test - y_pred)**2))
bias[degree] = np.mean((y_test - np.mean(y_pred))**2)
variance[degree] = np.mean(np.var(y_pred))
print(’Max depth:’, degree)
print(’Error:’, error[degree])
print(’Bias^2:’, bias[degree])
print(’Var:’, variance[degree])
print(’{} >= {} + {} = {}’.format(error[degree], bias[degree], variance[degree], bias[degree]+variance[degree]))

plt.xlim(1,maxdegree-1)
plt.plot(polydegree, error, label=’Error’)
plt.plot(polydegree, bias, label=’bias’)
plt.plot(polydegree, variance, label=’Variance’)
plt.legend()
plt.show()

Xgboost on the Cancer Data
As you will see from the confusion matrix below, XGBoots does an excellent job
on the Wisconsin cancer data and outperforms essentially all agorithms we have
discussed till now.

import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import cross_validate
import scikitplot as skplt
import xgboost as xgb
Load the data
cancer = load_breast_cancer()

X_train, X_test, y_train, y_test = train_test_split(cancer.data,cancer.target,random_state=0)
print(X_train.shape)

31

print(X_test.shape)
#now scale the data
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

xg_clf = xgb.XGBClassifier()
xg_clf.fit(X_train_scaled,y_train)

y_test = xg_clf.predict(X_test_scaled)

print("Test set accuracy with Random Forests and scaled data: {:.2f}".format(xg_clf.score(X_test_scaled,y_test)))

import scikitplot as skplt
y_pred = xg_clf.predict(X_test_scaled)
skplt.metrics.plot_confusion_matrix(y_test, y_pred, normalize=True)
save_fig("xdclassiffierconfusion")
plt.show()
y_probas = xg_clf.predict_proba(X_test_scaled)
skplt.metrics.plot_roc(y_test, y_probas)
save_fig("xdclassiffierroc")
plt.show()
skplt.metrics.plot_cumulative_gain(y_test, y_probas)
save_fig("gdclassiffiercgain")
plt.show()

xgb.plot_tree(xg_clf,num_trees=0)
plt.rcParams[’figure.figsize’] = [50, 10]
save_fig("xgtree")
plt.show()

xgb.plot_importance(xg_clf)
plt.rcParams[’figure.figsize’] = [5, 5]
save_fig("xgparams")
plt.show()

32

