Introduction to Deep Learning

Raghu Ramanujan

Dept. of Mathematics and Computer Science

Davidson College

Neural Network Fundamentals

The Neuron

The Neuron

"Real" Neuron

Artificial Neurons

Artificial Neurons

Artificial Neurons

Fully-Connected Neural Network

BACKPROPAGATION:

Initialize all weights in the network to small, random numbers.

loop

for each training example (\mathbf{x}, y) do

FORWARDPROP:

For each hidden unit $h, g_h = \sigma(net_h) = \sigma(\sum_i w_{ih}x_i)$

$$\hat{y} = a_k = \sigma(net_k) = \sigma(\sum_h w_h a_h)$$

BACKPROP:

$$\delta_k = \frac{\partial J}{\partial n g \ell_k} = (y - \hat{y})\hat{y}(1 - \hat{y})$$

For each weight w_h , $w_h \leftarrow w_h - \eta \delta_k a_h$

For each hidden unit h, $\delta_h = \delta_k w_h a_h (1 - a_h)$

For each weight w_{ih} , $w_{ih} \leftarrow w_{ih} - \eta \delta_h x_i$

end for

end loop

Modern Neural Networks

, Automatic Differentiation

Automatic Differentiation

- Use the abstraction of a computational graph
- Define your computation and let engine worry about optimization

Forward Pass

• Apply the operator

$$\frac{\partial p}{\partial w_1} = x_1$$

Backward Pass

 Adjust parameter using local gradient 3 (scaled by a learning rate)

$$\frac{\partial p}{\partial w_1} = x_1$$

4-----

Backward Pass

 Adjust parameter using local gradient 3 (scaled by a learning rate)

$$\frac{\partial r}{\partial p} = 1$$

$$\frac{\partial p}{\partial w_1} = x_1$$

$$\frac{\partial r}{\partial w_1} = \frac{\partial r}{\partial p} \frac{\partial p}{\partial w_1}$$

Dynamics of Learning in Deep Networks

Choosing an Activation Function

$$f(x) = \frac{1}{1 + e^{-x}}$$

Sigmoid

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Hyperbolic Tangent (tanh)

$$f(x) = \max(0, x)$$

Rectified Linear Unit (ReLU)

Initializing Network Weights

- Set all weights to 0?
 - Bad idea
- Set all weights to random values?
 - For very deep networks, gradients will vanish
- Main insight: want to keep variance of activations roughly same across layers
 - Xavier initialization for tanh/sigmoid networks
 - He initialization for ReLu networks
 - Both take into account fan-in/fan-out of each unit

Optimization Methods

Optimization Methods

• (Stochastic) gradient descent

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla L(\mathbf{w})$$

Stochastic gradient descent + momentum

$$\mathbf{z} \leftarrow \beta \mathbf{z} + \nabla L(\mathbf{w})$$
$$\mathbf{w} \leftarrow \mathbf{w} - \alpha z$$

- Adaptive gradient approaches:
 - RMSProp
 - Adam

Regularization – Classical Approaches

- Weight decay
 - Add an L2 term to cost function
- Early stopping
 - "Regularization in time"

Regularization – Newer Approaches

Dropout

- Batch normalization
 - Motivation: "internal covariate shift"
 - Idea: Normalize activations at every layer

Summary

- Automatic differentiation
- Better hardware + large datasets
- Activation functions with better gradient flow
- Heuristics for weight initialization
- Better optimization algorithms
- Batch normalization