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’ Neural Network
Fundamentals
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Fully-Connected Neural Network
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BACKPROPAGATION:

Initialize all weights in the network to small, random

loop

for each training example (x,y) do

FORWARDPROP:
For each hidden unit h, g = o(nety,) = o (>, winz;)
U = ap = o(nety) = . Whap,)

BACKPROP:

Or each hidden unit h, 6, = dpwpan(l — ap)

For each weight w;p, w;, <— w;p — nopx;

end loop




Modern Neural Networks




¢ Automatic
Differentiation



Automatic Differentiation

* Use the abstraction of a computational graph

* Define your computation and let engine worry about optimization

¥ Tensor O PyTorch



Computational Graph
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Computational Graph
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Computational Graph
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Dynamics of
, Learning in Deep
Networks



Choosing an Activation Function

1 et —e *

g f(x) = pra— f(x) = max(0, x)

f(x)

Sigmoid Hyperbolic Tangent Rectified Linear Unit
(tanh) (ReLU)



Initializing Network Weights

* Set all weights to 07?
* Bad idea

* Set all weights to random values?
* For very deep networks, gradients will vanish

* Main insight: want to keep variance of activations roughly same
across layers
* Xavier initialization — for tanh/sigmoid networks
* He initialization — for ReLu networks
* Both take into account fan-in/fan-out of each unit



, Optimization
Methods



Optimization Methods

* (Stochastic) gradient descent

w < w —aVL(w)

 Stochastic gradient descent + momentum
z < Pz + VL(w)
W {— W — Q2

» Adaptive gradient approaches:
* RMSProp
* Adam



Regularization — Classical Approaches

* Weight decay
* Add an L2 term to cost function

* Early stopping

e “Regularization in time”

Loss vs. Training Time
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Regularization — Newer Approaches

* Dropout

(b) After applying dropout.

a) Standard Neural Net

e Batch normalization

 Motivation: “internal covariate shift”

* |dea: Normalize activations at every layer



Summary

* Automatic differentiation

» Better hardware + large datasets

* Activation functions with better gradient flow
* Heuristics for weight initialization

* Better optimization algorithms

e Batch normalization



