TALENT Course 2018

Many-Body Perturbation Theory Calculations

胡柏山 (Baishan Hu)

北京大学物理学院(Peking University, Beijing, China) July 31, 2018 @ Xinxiang

Outline

- I. Introduction
- **II.** Theoretical framework and calculations
 - a) MBPT for closed-shell nuclei
 - b) MBPT (Q-box + folded diagrams) for open-shell nuclei
- **III. Summary and Outlook**

Perturbation theory

takes us from a simple, exactly solvable (unperturbed) problem to a corresponding real (perturbed) problem

Operation the end of the second state in the end of the

History of MBPT

- Wey tool from 1950's to 1970's
 - Rayleigh-Schrödinger perturbation theory
 - G-matrix, Brueckner-Hartree-Fock method
 - Valence-space shell-model interaction (Q-box + folded diagram)

Great depression in 1980's

- Depending on a starting energy parameter of G-matrix
- Poor convergence of the intermediate-state summations (tensor part)
- Intruder states
- Today MBPT is coming back ...
 - \blacktriangleright RSPT with soft potential (V_{low-k} , SRG, UCOM, OLS)
 - Bogoliubov MBPT
 - Auxiliary method (importance truncation, natural orbital basis)
 - Realistic Gamow shell model (Extended Kuo-Krenciglowa method)

MBPT for closed-shell nuclei

$$\begin{split} \hat{H} &= \sum_{i=1}^{A} \left(1 - \frac{1}{A} \right) \frac{\vec{p}_{i}^{2}}{2m} + \sum_{i < j}^{A} \left(\hat{V}_{NN,ij} - \frac{\vec{p}_{i} \cdot \vec{p}_{j}}{mA} \right) + \sum_{i < j < k}^{A} \hat{V}_{3N,ijk} \\ & \textbf{Rayleigh-Schrödinger perturbation theory} \\ \hat{H} &= \hat{H}_{0} + (\hat{H} - \hat{H}_{0}) = \hat{H}_{0} + \hat{V} \\ \hat{H}\Psi_{n} &= E_{n}\Psi_{n} \qquad \hat{H}_{0}\Phi_{n} = E_{n}^{(0)}\Phi_{n} \\ \Delta E &= E_{0} - E_{0}^{(0)} \\ \Psi_{0} &= \sum_{m=0}^{\infty} \left[\hat{R}_{0}(E_{0}^{(0)})(\hat{V} - \Delta E) \right]^{m}\Phi_{0} \\ E &= \sum_{m=0}^{\infty} \langle \Phi_{0} | \hat{V} [\hat{R}_{0}(E_{0}^{(0)})(\hat{V} - \Delta E)]^{m} | \Phi_{0} \rangle \\ \text{where } \hat{R}_{0} &= \sum_{i \neq 0}^{\infty} \frac{|\Phi_{i}\rangle\langle\Phi_{i}|}{E_{0}^{(0)} - E_{i}^{(0)}} \end{split} \\ \end{split}$$

B. S. Hu - TALENT Course, July 31, 2018

 ΔE

Advantages in HF basis, compared with HO basis

- 😌 Faster convergence
- Some perturbation diagrams are cancelled out
- In HO basis, calculations could be ħω dependent, while much less in HF basis

 $E_0 - E_0^{(0)}$

RSPT for closed-shell nuclei

- \succ HF state is chosen as a reference state H₀
- > In the HF basis, make RSPT corrections

 $E = E^{(0)} + E^{(1)} + E^{(2)} + E^{(3)} + \cdots$

- □ Energy up to 3rd order
- □ Wave function up to 2nd order (One-body density)

HF-RSPT calculations for ¹⁶O with N³LO-SRG, N_{shell} =13, ħ ω =35 MeV

	SRG flow parameter λ (fm ⁻¹)					
Binding energy	1.5	2.0	2.5	3.0		
Expt. [60] SHF PT2 PT3 SHF+PT2+PT3	-127.619 -169.968 -10.132 -0.794 -180.893	-127.619 -133.169 -29.497 -1.931 -164.597	-127.619 -85.173 -59.617 -4.630 -149.419	-127.619 -44.102 -88.326 -7.339 -139.767		
3NE important !	B.S. Hu , F.R. Xu, <i>et al.</i> , PRC 94, 014303 (2017)					
	SRG flow parameter λ (fm ⁻¹)					
Point-proton rms radius	1.5	2.0	2.5	3.0		
Expt. SHF PT2 $\Delta r_{c.m.}$ SHF+PT2+ $\Delta r_{c.m.}$	2.581 2.098 0.011 -0.067 2.042	2.581 2.096 0.011 -0.067 2.040	$2.581 \\ 2.201 \\ -0.006 \\ -0.070 \\ 2.125$	$2.581 \\ 2.345 \\ -0.042 \\ -0.073 \\ 2.230$		

Inclusion of 3NF

$$\begin{split} \hat{H} &= \sum_{i=1}^{A} \left(1 - \frac{1}{A}\right) \frac{\vec{p}_{i}^{2}}{2m} + \sum_{i < j}^{A} \left(\hat{V}_{NN,ij} - \frac{\vec{p}_{i} \cdot \vec{p}_{j}}{mA}\right) + \sum_{i < j < k}^{A} \hat{V}_{3N,ijk} = \sum_{i=1}^{A} \hat{H}_{i}^{(1)} + \sum_{i < j}^{A} \hat{H}_{ij}^{(2)} + \sum_{i < j < k}^{A} \hat{V}_{3N,ijk} \\ \hat{H} &= \begin{bmatrix} \hat{H} \\ \hat{H}$$

ASG diagram expansion when 3NF is included

E⁽³⁾: 56 terms (Derived for the first time)

ASG diagram expansion when 3NF is included

B. S. Hu - TALENT Course, July 31, 2018

HF-RSPT calculations with NO2B N²LO_{sat}, N_{shell} =13, $\hbar\omega$ =22 MeV

D
I
Expt.
-28.30
-105.29
-119.18
-127.62
-162.03
-168.97
-342.05
-416.00

B.S. Hu, T. Li, F.R. Xu, in preparation (2018)

	15					
		NN		NN + 3N		
		IM-SRG	HF-RSPT1	IM-SRG	HF-RSPT1	Expt.
	$^{4}\mathrm{He}$	1.64	1.66	1.69	1.75	1.6755(28)
Charge radius	$^{14}\mathrm{C}$	2.10	2.10	2.43	2.57	2.5025(87)
	^{22}C	2.05	2.02	2.53	2.63	_
	^{16}O	2.20	2.20	2.67	2.78	2.6991(52)
	^{22}O	2.13	2.10	2.66	2.75	
	^{24}O	2.14	2.10	2.70	2.78	_
	^{40}Ca	2.61	2.58	3.40	3.49	3.4776(19)
	^{48}Ca	2.55	2.51	3.38	3.46	3.4771(20)
	100					

MBPT for open-shell nuclei

References

- T.T.S. Kuo and E. Osnes, Folded-Diagram Theory of the Effective Interaction in Atomic Nuclei, Springer Lecture Notes in Physics, (Springer, Berlin, 1990) Vol. 364.
- T.T.S. Kuo, et al. , A Simple Method an Angular for Evaluating Momentum Goldstone Coupled Diagrams in Representation.ANNALS OF PHYSICS, 132, 237-276
- S.Y. Lee and K. Suzuki, Phys. Lett. B 91 (1980) 79; K. Suzuki and S.Y. Lee, Prog. Theor. Phys. 64 (1980) 2091.
- M. Hjorth-Jensen, T.T.S. Kuo, and E. Osnes, Realistic effective interactions for nuclear systems, Phys. Rep., 1995, 261, 125.

MBPT for open-shell nuclei

$$\begin{pmatrix} PHP & PHQ \\ \hline QHP & QHQ \end{pmatrix} \mathcal{H} = e^{-G}He^{G} \begin{pmatrix} PHP & PHQ \\ \hline D & QHQ \end{pmatrix} \hat{H} = \hat{H_{0}} + (\hat{H} - \hat{H_{0}}) \\ = \hat{H_{0}} + \hat{H_{1}} \\ \hline 0 & QHQ \end{pmatrix} \hat{H} = P\mathcal{H}P = Pe^{-G}He^{G}P_{T}$$

$$\begin{aligned} \text{Kuo-Krenciglowa method (Folded-Diagram method)} \\ V_{\text{eff}} &= \widehat{Q}(\varepsilon_0) - \widehat{Q}'(\varepsilon_0) \int \widehat{Q}(\varepsilon_0) + \widehat{Q}'(\varepsilon_0) \int \widehat{Q}(\varepsilon_0) \int \widehat{Q}(\varepsilon_0) - \cdots \\ V_{\text{eff}}^{(n)} &= \widehat{Q}(\varepsilon_0) + \sum_{\nu=1}^{\infty} \frac{1}{k!} \frac{d^k \widehat{Q}(\varepsilon_0)}{d\varepsilon_0^k} \{V_{\text{eff}}^{(n-1)}\}^k \\ \widehat{Q}(E) &= P \widehat{H}_1 P + P \widehat{H}_1 Q \frac{1}{E - Q \widehat{H} Q} Q \widehat{H}_1 P \quad \frac{1}{E - Q \widehat{H} Q} = \sum_{n=0}^{\infty} \frac{1}{E - Q \widehat{H}_0 Q} \left(\frac{Q \widehat{H}_1 Q}{E - Q \widehat{H}_0 Q}\right)^n \end{aligned}$$

Factorization theorem: the core is separated out and only quantities relative to the core are concerned

Q-box is made up of non-folded diagrams which are irreducible and valence linked

MBPT for open-shell nuclei

Bloch–Horowitz
$$H^{BH}(E_{\lambda})P|\Psi\rangle = [PH_{0}P + P\hat{Q}(E_{\lambda})P]P|\Psi\rangle = E_{\lambda}P|\Psi\rangle$$

 $\hat{Q}(E) = P\hat{H}_{1}P + P\hat{H}_{1}Q\frac{1}{E - Q\hat{H}Q}Q\hat{H}_{1}P$

$$\frac{1}{E - Q\hat{H}Q} = \sum_{n=0}^{\infty} \frac{1}{E - Q\hat{H}_0 Q} \left(\frac{Q\hat{H}_1 Q}{E - Q\hat{H}_0 Q}\right)^n$$

Kuo-Krenciglowa

degenerate model space

$$V_{\text{eff}}^{(n)} = \widehat{Q}(\varepsilon_0) + \sum_{k=1}^{\infty} \frac{1}{k!} \frac{d^k Q(\varepsilon_0)}{d\varepsilon_0^k} \{V_{\text{eff}}^{(n-1)}\}^k$$

Extended Kuo-Krenciglowa

$$H_{\text{eff}}^{(n)} - E = PH_0P - E + \widehat{Q}(E) + \sum_{k=1}^{\infty} \frac{1}{k!} \frac{d^k \widehat{Q}(E)}{dE^k} \{H_{\text{eff}}^{(n-1)} - E\}^k$$

Advantages in HF basis, compared with HO basis

- Faster convergence
- Some perturbation diagrams are cancelled out
- In HO basis, calculations could be ħω dependent, while much less in HF basis

Diagrammatic expansion

MBPT for open-shell nuclei

Realistic Gamow shell model Workflow

Nucleus as an open quantum system

G. Hupin, S. Quaglioni, P. Navratil, PRL114, 212502 (2015)

Gamow-Berggren basis

The wave function of a resonance with a peak at energy e_0 and a width γ

$$\Phi(e, \mathbf{r}) = \sqrt{\frac{\gamma/2}{\pi[(e - e_0)^2 + (\gamma/2)^2]}} \Psi(\mathbf{r})$$

Through the Fourier transform, we obtain the time evolution of the resonance

$$\Phi(t,\mathbf{r}) = \Psi(\mathbf{r})e^{-i\tilde{e}t/\hbar} \qquad \tilde{e}_n = \frac{\hbar^2 k_n^2}{2m} = e_n - i\frac{\gamma_n}{2} \qquad t_{1/2} = \frac{\hbar ln2}{\gamma}$$

Gamow state: Complex energy G. Gamow, Z. Phys.51 (1928) 204

Gamow Hartree-Fock

Step 1: Solve the Hartree-Fock equations in HO representation using H_{int} ,

$$H_{\text{int}} = \sum_{i=1}^{A} \left(1 - \frac{1}{A} \right) \frac{\vec{p}_i^2}{2m} + \sum_{i$$

Step 2: Extract the non-local HF potential v(r,r')

$$h_{ij}^{\rm HF} = \langle i|t|j\rangle + \langle i|v|j\rangle = \langle i|t|j\rangle + \sum_{k=1} \langle ik|V|jk\rangle$$

Step 3: Obtain the radial wave function u(r)/r in complex-k plane

$$u''(r) = \left[\frac{l(l+1)}{r^2} + v^{(\text{loc})}(r) - k^2\right]u(r) + \int_0^{+\infty} v^{(\text{non-loc})}(r, r')u(r')dr'$$
$$u(\tilde{e}, r) \sim C_0 r^{l+1}, \quad r \to 0, \qquad \tilde{e_n} = \frac{\hbar^2 k_n^2}{2m} = e_n - i\frac{\gamma_n}{2}$$
$$u(\tilde{e}, r) \sim C^+ H_{l\eta}^+(kr) + C^- H_{l\eta}^-(kr), \quad r \to +\infty.$$

Exterior complex scaling

 $u_n(\widetilde{e_n}, r) \sim O_l(k_n r) \sim e^{ik_n r}$

r' (fm)

$$\int_{0}^{+\infty} u(\tilde{e}, r)^{2} dr = \int_{0}^{R} u(\tilde{e}, r)^{2} dr + (C^{+})^{2} \int_{R}^{+\infty} H_{l\eta}^{+}(kr)^{2} dr$$
$$= \int_{0}^{R} u(\tilde{e}, r)^{2} dr + (C^{+})^{2} \int_{0}^{+\infty} H_{l\eta}^{+}(kR + kxe^{i\theta})^{2} e^{i\theta} dx$$

B. S. Hu - TALENT Course, July 31, 2018

Results of GHF

Order-by-order convergence in real-energy space

Oxygen isotopes from RGSM

Fluorine isotopes from RGSM

Gamow IM-SRG

Hermite (HO basis / real-energy HF)

Complex symmetric (Gamow-Berggren basis)

Gamow IM-SRG vs RGSM

Summary

- Develop HF-RSPT including the wave-function and three-body force corrections.
- Develop the third-order RGSM within HF basis
- Describe oxygen and fluorine isotopes

Outlook

- Derive the cross-shell effective interactions (*sdpf*-shell, ...)
- Reconciling the microscopic valence-space effective interactions with the nuclear reaction theory (GSM-RGM)

Collaborators:

Furong Xu (Peking University) Qiang Wu (Peking University) Tong Li (Michigan State University) Zhonghao Sun (Oak Ridge National Laboratory) Jianguo Li (Peking University) Nicolas Michel (Michigan State University) **Gratitude:**

Junchen Pei (Peking University) Simin Wang (Michigan State University) Thomas Papenbrock (Oak Ridge National Laboratory) Gustav R. Jansen (Oak Ridge National Laboratory) Luigi Coraggio (INFN-Naples) James P. Vary (Iowa State University) Ruprecht Machleidt (University of Idaho) Marek Ploszajczak (GANIL) Our group: Yuanzhuo Ma, Bo Dai, Sijie Dai, Yifang Geng, ...

Thank you for your attention!

Back up

A. Gamow Hartree-Fock

The HF single-particle state $|\alpha\rangle_{\rm HF}$ can be expanded on HO basis $|p\rangle$,

$$|\alpha\rangle_{\rm HF} = \sum_{p} D_{p\alpha} |p\rangle. \tag{2}$$

We diagonalize the Hartree-Fock one-body Hamiltonian in HO representation,

$$\langle p|h^{\rm HF}|q\rangle = \langle p|t|q\rangle + \langle p|U|q\rangle = \langle p|t|q\rangle + \sum_{i=1}^{A} \sum_{rs} \langle pr|V|qs\rangle D_{ri}^{*} D_{si}.$$
 (3)

After iterative solution of the HF equations, we can obtain the HF potential

$$\langle p|U|q\rangle = \sum_{i=1}^{A} \sum_{rs} \langle pr|V|qs\rangle D_{ri}^{*} D_{si}.$$
(4)

The the channel

$$\langle k|h^{\rm HF}|k'\rangle = (1 - \frac{1}{A})\frac{\hbar^2}{2m}k^2\delta_{kk'} + \sum_{pq}\langle p|U_{\rm HF}|q\rangle\langle k|p\rangle\langle q|k'\rangle \tag{5}$$

where $\langle q|k'\rangle$ is the HO wavefunction in complex-momentum space $\langle k|$. It's noting that

$$\hat{\rho}(\vec{r}) = \sum_{k=1}^{A} \delta^{3}(\vec{r} - \vec{r}_{k}) = \sum_{k=1}^{A} \frac{\delta(r - r_{k})}{r^{2}} \sum_{lm} Y_{lm}^{*}(\hat{\mathbf{r}}_{k}) Y_{lm}(\hat{\mathbf{r}}) \qquad \hat{\rho}(\vec{r}) = \sum_{K} \sum_{n_{1}l_{1}j_{1}} \sum_{n_{2}l_{2}j_{2}} \sum_{m_{j}} R_{n_{1}l_{1}}(r) R_{n_{2}l_{2}}(r) \frac{-Y_{K0}^{*}(\hat{\mathbf{r}})}{\sqrt{2K+1}} \\ \times \left\langle l_{1} \frac{1}{2} j_{1} \Big| |Y_{K}| \Big| l_{2} \frac{1}{2} j_{2} \Big\rangle \langle j_{1}m_{j}j_{2} - m_{j}|K0 \rangle \right\rangle \\ \Psi = \Phi_{0} + \Psi^{(1)} + \Psi_{b}^{(2)} + \Psi_{c}^{(2)}, \qquad \times (-1)^{j_{2}+m_{j}} a_{n_{1}l_{1}j_{1}m_{j}}^{\dagger} a_{n_{2}l_{2}j_{2}m_{j}}$$

 $\rho(\vec{r}) = \langle \Psi | \hat{\rho}(\vec{r}) | \Psi \rangle$

 $= \langle \Phi_0 | \hat{\rho}(\vec{r}) | \Phi_0 \rangle + \langle \Phi_0 | \hat{\rho}(\vec{r}) | \Phi_0 \rangle \langle \Psi^{(1)} | \Psi^{(1)} \rangle + 2 \langle \Phi_0 | \hat{\rho}_N | \Psi_b^{(2)} \rangle + 2 \langle \Phi_0 | \hat{\rho}_N | \Psi_c^{(2)} \rangle + \langle \Psi^{(1)} | \hat{\rho}_N | \Psi^{(1)} \rangle$ $= \langle \Phi_0 | \hat{\rho}(\vec{r}) | \Phi_0 \rangle + \langle \Phi_0 | \hat{\rho}(\vec{r}) | \Phi_0 \rangle \langle \Psi^{(1)} | \Psi^{(1)} \rangle + 2 \rho_a + 2 \rho_b + \rho_{c_1} + \rho_{c_2},$

$$\rho_{a} = \frac{1}{2} \sum_{h_{1},h_{2}} \sum_{p_{1},p_{2},p_{3}} \frac{(-1)^{j_{h_{1}}+j_{h_{2}}} \sqrt{2j_{h_{2}}+1}}{(\varepsilon_{h_{1}}-\varepsilon_{p_{1}})(\varepsilon_{h_{1}}+\varepsilon_{h_{2}}-\varepsilon_{p_{2}}-\varepsilon_{p_{3}})} \sum_{J} (-1)^{J} (2J+1) \begin{cases} j_{h_{1}} & j_{p_{1}} & 0\\ j_{h_{2}} & j_{h_{2}} & J \end{cases}$$
$$\times \langle (h_{1}h_{2})J|\hat{\mathbf{H}}|(p_{2}p_{3})J\rangle \langle (p_{2}p_{3})J|\hat{\mathbf{H}}|(p_{1}h_{2})J\rangle \langle h_{1}\|\rho\|p_{1}\rangle,$$

B. S. Hu - TALENT Course, July 31, 2018

• •