
Similarity Renormalization Group ( SRG )

The essential idea of the SRG is to perform a

unitary transformation on our Hamiltonian ( and all other

operators ) to produce an equivalent Hamiltonian which is

easier to use in a many - body calculation
.

For example ,
a common application is to use the SRG

to
"

soften "

an interaction so that it converges
More rapidly as the basis size  is increased .

In the next notes
,

we 'll also see that the in . medium

formulation of the SRG can be used to directly
solve the many - body problem .

Background : The Renormalization Group

As an introduction to the concept of the renormalization group,

consider the following simple example from Classical electrodynamics .

A point particle with mass m and charge of is

at rest
• m ,q

What is the energy of the system ? Well
, we know

the rest mass contributes an energy = me
.

But there

is  also  energy stored in theelectrihcfield :

U⇐m=€zfd3rlEc⇒I2

= CEfFarzdr/4÷€or42

= g*9e÷f¥zdr =D
.



The energy stored In the field of  a point
Charge is infinite ! This is a clear indication that

a literal point charge is nonsense .
This

Issue
has

caused much consternation historically ,
and basically

the same issue shows up  in quantum field theory ,

to the great uneasiness of many physicists .

However
,

the resolution  Is actually fairly straightforward:

a Literalpoint charge that is
,

one with no spatial
extent whatsoever all the way down to the tiniest  scales

a

imaginable - is indeed nonsense .
In order for the

theory to make sense ( even without quantum effects )
,

the distribution must have some finite extent
.

But now we run Into another snag : Earnshaws '

theorem

tells Us there can be no stable purely electrostatic

Configuration . Any two little pieces of  charge will repel one

another and the whole thing flies apart .

# For a stable
,

finitedistribution ,there
Etfetidsoomnb

must be some additional physics beyond
electrostatics gluing things together.

In

the case of a proton ,
this additional physics is

the strong force
.

But  in  any case there needs to

be seething holding things together.
So to calculate

the total energy we add up the mass
,

electrostatic
,

and mystery - physics Contributions :
energy

density

fof mystery
theory

U= me + Efoirleast + firm.org



We still have some problems

.
First , we need to know the

exact charge distribution  of  our
"

point  charge
"

to arbitrary
precision ,

with arbitrary spatial resolution . Slight variations

at very short distances will have enormous impact  on

the total energy . Second
,

we need to know how

to calculate the energy content of our Mystery
theory .

In the case of a proton ,
this is a very

painful calculation
. In the case of  an electron

, we

have no idea what the theory should even be .

So are we doomed ? Not necessarily . Imagine we

don't know the mystery theory ,
and we don't

know the charge distribution
,

but we do know

that the distribution Is smaller than some characteristic

length scale Ao .
Let as also assume that the

mystery physics Is of sufficiently short range that
it  is negligible at a distance rzao .

Now
,

let's draw some Imaginary shell of radius
R

.
> a

.

and split the expression for the

energy into two pieces ,
one for RLR

.

and one

for r

>,Ro
:

U - me + Eminent + ftp.u?ors+Erfk3rteorst+f?d3ru?cr)

in fO* > •

Ro



We have assumed that ↳ lD=o for r >R . ,
so we

can drop that term . Also
,

note that the  electrostatic

integral from R to 6 is finite :

U= me t.HR#Eirsi+u?crs ] + stE÷r
.

We still don't know how to handle the integral from
0 to Ro

.
However

,
we do know that  it must

be some finitenumber .
Furthermore

,
its only effect

will be to produce a constant energy at the

location of the particle .
This is totally indistinguishable

from a mass term
,

so long as we stay
farther away than Ro

.

So we lump that

into
a renormalized or

"

physical
"

massThisname+ Smt
,

Sme=f%dr[ElEi⇒l2+u?c⇒]
"

physical
"

"

bare
"

"
refrorrmalized mass

mass

U=

mrc2+s9t÷r
.

The parameter Ro
,

which we used to cut off our

integral ,
is arbitrary - physical predictions should not

depend on  it
. Specifically ,

the energy should not

depend on

Roi
data

.

=

Frothy
) + Falster

.
) = o

d q2
⇒ IR

.(Mrc)=
Erg .

← ( Renormalization group
- equation for MCR . ) )



The Mass parameter of our theory depends on the

cutoff Ro
,

but the total energy does not
.

^

r 7 If we fix our theory at
# some Ro

,
then mlro ) is

¢ ,

I related to the mass we

< 4 % al'
E would have found at

/ / ROHR
.( 1 Rotsro by"

" " '
L s Ro+SR

.

-
Ml Rotsr .) c2 = MLRDE + /d3r€zlEP

Ro

That is
,

the mass increases by an amount equal to

the electrostatic  energy stored

between
the two shells

.

The differential equation dictating how the mass

changes with our cutoff Ro  is called a

"
renormalization group flow equation?

Incidentally ,
the mass in this problem  is an example  of

what are called
"

counter terms
"

, absorbing physics beyond the cutoff
.

As we vary Ro
,

the total energy U is unchanged .

However
,

the relative contributions  of mass and

electrostatic energy do change .
These quantities are

called
"

scale - dependent
"

and clearly should not be

observable Individually .

This example outlines the basic philosophy of the

renormalization group
.  applicationsare typically more

complicated ,
and the

'

integrals are more difficult
. We also

have not yet toched on the great power of
renormalization group Ideas to solve difficult problems .



how - momentum NN potentials : Viowk

As an example of RG concepts applied to nuclear

physics ,
we briefly touch upon the Vwwk approach

before moving on to the similarity renormalization

group .

Consider the scattering of two particles with

incoming relative momentum K
, interacting by a

potential V
.

The Hamiltonian is H=T+V
.

If we denote plane wave States 101k ) and

interacting States Hk > ,
then the Lippmann - Schwinger

equation is

µ,<y= 10 ,D+Gr=Vl4k>
.

Here G⇐ is the Green's function
,

or propagator .
The

form of Ge depends on the boundary conditions we

choose
, typically incoming loutgoiug waves or standing waves

.

It turns out to be handy to define the

T- matrix

(

ohaitllk
>±(

¢ktVl4
)

which obeys its own Lippmann - Schwinger equation ,

II. = Vt GEVTE .

This may be expressed in a partial wave

basis as



( k 'lTe1k)= < KIVIK > + ?fPfLppa<
' '

' n' P > < Pltelk >
E - pz

Here I use the notation LK 'Wlk)= LOKIVIOK )
and I use scattering units hTic=m=1

.
This means

the kinetic energy of lad is just k2
.

I also

have selected the principal value form of the

propagator Ge
,

which corresponds to standing wave

boundary conditions
.

Note that the integral runs to

p=X°

Realistically
,

no nuclear potential is valid up to p=A ,

so the integral should have some upper limit
,

which

we denote A
.

< KITEIK > = ( k '1Vn)|k > + ftp.d/ppzCKNlPkPlTk.lk >
1<2 - pz

Our goal is now to change the cutoff A- while

leaving the T . matrix unchanged :

£a< kltalk > = 0

Physically ,
the scattering amplitude is proportional to

the T matrix

felk'←k)=-

4tµ{
KITEIK )

so leaving the Fmatrix unchanged means that scattering
observables

,
like cross sections

,
are unchanged .

Note that

due to energy ¢ momentum conservation
, only

"

on . shell
"

matrix elements with kt-k2 are Observable
. Preserving

the
"

half on . shell
"

terms is an extra requirement .



This
"

extra
" requirement ensures that the low . momentum components

of the wave function are unchanged .
It also leads to

a non . Hermitian potential Lthough its
'

typically almost Hermitian ) .

Taking the derivative of both sides of the equation for

I
,

after some Manipulation one obtains

E. < kyvlk ) =¥ " it " Aftitylfttk> .
( V. own flow  eq . )

This is a renormalization group flow equation for the

potential Vlkik ) . Beginning with some microscopic

potential like AV18
,

CD - Bonn
,

a chiral potential ,
etc

.

which reproduces NN scattering data
,

we can solve

the flow equation to  integrate out high - momentum

modes while preserving the reproduction of data
.

Note that
, technically ,

the set  of transformations that[
lead to potentials at different scales do not form

a group  in the mathematical sense because

they are not invertible . That  is
,

various high - momentum

interactions will collapse to the same low . momentum

interaction .
We don't have enough information to

reconstruct the original interaction from the evolved

one
,

because we threw it out
.

On the  other hand
, Similarity Renormalization Group transformations

,

which we 'll get to  shortly ,
are invertible and so do form

a group . ]



Why is this useful ?

So we've seen that we can eliminate high . momentum

modes from our theory without changing observables
.

But what is the point of doing this ?

In short
, eliminating modes allows us to work in a

smaller Model space ,
which Makes calculations feasible

.

As a concrete example ,
consider our calculation of

infinite nuclear matter
. We of course cannot put

literally infinite matter on a computer . In practise
we put a finite number  of particles in a

finite box and truncate the number of
momentum Modes to

, e.g. nItnitnE< Nmax .
For a

fixed particle number A and box size L
,

we

should increase the artificial cutoff Nmax until

convergence ; that  is
,

until further increasing Nmax

no longer appreciably changes our result .

The  size  of the single particle basis grows
asymptotically as Ninh

,
and many

- body calculations

quickly become expensive - for example ,
FCI grows

factorial with the number of States .

If we are interested in low -

energy properties ,
the

value of Nmax needed for convergence depends on how

strongly the interaction couples low and high momenta
.

Reducing the strength of the high . low coupling improves
the rate of convergence .

We 'll return to this

shortly .



Similarity Renormalization Group ( SRG )

Another strategy to suppress high . momentum degrees of freedom

is to perform a unitary transformation  of the

Hamiltonian :

II = UHUT

,
U+u=uut=1

.

Since the transformation is
unitary

,
observables will be

Unchanged by construction .
However

,
we don't know

how to construct U right away .
The approach we

will take is to parameterise the transformation

Using a continuous flow parameter S
.

We label the initial

Hamiltonian With s=o
,

so that U(s=o)=1 and

Hls ) = Us )Hco)U+G) .

Next
,

we differentiate with respect To s

'

ddtst.at#HcaUtss+Ucs)HudahsI=ddUFU+ssUcssHiosUis)+UHHoo)UtcssUs)dtI
'

We can make some progress by taking a different

derivative

otaslusutcs, )= dual 'iss+U↳,du§dd=dasl±)=o

dUd5IUts= - Us , duty
= - ( dawdles,)+

We then define : Mls) -= duh UYS) =
- ztcs ,



The anti - hermitian operator ycs) is called the

generator of the unitary transformation
. In terms

of Miss,
our differential equation ( or flow equation)

is

does = yc ⇒ HostHoyts )

= Mcsjttcs) - Hcssycs)

de '
= [ Miss ,

His

)]•§RGflow equation)
The trick is now to choose a form  of the generator

y which drives Acs) to a desirable form
.

As

we discussed with Viowk
, high momentum modes cause a

headache for our Many - body methods
. We can't eliminate

those modes - that would break unitarily .

But we can

try to decouple high and low momenta .

A choice that does a reasonable job of suppressing
Coupling to high - momentum modes is the

"

canonical
"

generator
Mls) = [ T

,
Hoss ]

.
( T = kinetic  energy )

If we define the kinetic energy to be unchanged

by the transformation : Hcss=TtV↳ )
,

then

dHI=
#

= [[t,usD,T+V↳s]ds AS

= TVTTTVV - VTT - VTV - TTV - VTVTTVTTVVT

= Tv2+v2T - ZVTV - ( VT
'

+ TV - ZTVT )



Writing things explicitly in a plane wave basis
,

we find

x

Is ( KYVIK > =

fa3q(
kntlihgikklvlqkqlvlk ) - (IEKYLKIVIK>

To understand what this will do
,

lets assume the first
term is small and we can neglect  it

. Then

EC KYVIK> =
- ( k

'

. KIYCKIVIK>

which we can immediately integrate to  obtain

( k'/Vcs)1K)= ( kyvcoyk > e-
(k 't"B

.

We find that off . diagonal matrix elements ( k'¥k) are

suppressed exponentially ,
with a strength depending

on the difference in the incoming and outgoing
momenta

. Diagonal matrix elements are unchanged .

We can also  observe that we  are essentially applying
a regulator which suppresses couplings with a momentum

difference characterized by the SRG scale

TsRG = 544
.

If we view ( KWIK ) as a matrix
,

,< →

we are driving V towards a band

diagonal form
,

with a width about

'

'

t.su?r@
The diagonal characterized by Tsr . .

K's

' ¥Sup€a
,

% XSRG



Of course
,

we can't just  ignore the first term

in the flow equation . It has to be there to

maintain unitarily by absorbing the high momentum

physics into a change in the low momentum parameters .

If K
'

- K
,

we ignore the Second term and we

have .

Fs (KIVIK >

=fd3g(k'
tktzqkklvlqkqlvlk )

Inside the integral ,
Values of qnknk

'

won't do

Much because kitk ' -25×0 . The  change in the potential
is dominated by contributions from high momenta q > > K .

Schematically ,
we can think of this  in terms of diagrams

K
'

n  ^
.

•mn•
- n

t.fi. ⇒fvfi
'

• •
n

-

~  

^K
( Klvlqkqlvlk > < ktvlk )

As we eliminate low . to - high momentum coupling ,
a process

that would have involved two scatterings with a high
momentum  intermediate state

,
is described in the new

theory by a single scattering with a renormalized potential .

The SRG in this case is performing the same function
AS Yowu

, although there are some differences
.
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The first major difference  is that Yowk eliminates

high momentum modes from the theory ,
while the SRG

suppresses coupling between high and low momenta .

The SRG leaves the coupling between high momentum

modes largely intact .

Schematically ,

k→ A
k→

,
=

" # ←
" ±#hYµ

,

t 1 t = Y
a 7 =

q =

Yowk SRG

Note that the band . diagonal Structure of the SRG
flow is a consequence of the choice M=[T,H] ,

since the kinetic energy is diagonal in K
.

We could make a different choice and obtain different
behavior

.
For example , y= [ (PnHR+Q~HQ),

It ] ,
with the projectors

Pn = §d3k IKKKI , QNE # klkkkl Will generate Via .
- type flow

.

Another difference Is one of convenience .
Viowk requires

the solution of the Lippman . Schwinger equation at

each Step in the flow
. SRG requires the evaluation

of commutations
,

which can be Cast as a matrix . matrix

multiplication - something computers are very good at
.



The third difference  is in the handling of Many . body
forces

.
We can see immediately that they will arise

in either formalism by considering the following
diagrams

P ,

' Pi Psi
p,

' Pi Ps
'

H

:#
. ⇒ H••t• •

p ,
Pz B Pi  Pz  Pz

A process in which two low momentum particles

P , & Pz scatter into a state with one low

momentum
P ! and One high momentum q⇒p , ,R

Will be eliminated by the RG flow ( SRG or how
,<

decimation )
E ( g- P ,

') > A-
.

However
,

before the elimination
,

the presence
of a third low momentum particle p3 could

allow the high momentum q particle to scatter

back down to low momenta Pi , ps .

In order to keep the physics unchanged,
we need a

Counter term
,

which In this case is an irreducible

3- body term in the Hamiltonian . Practically speaking ,

3- body terms are more painful to deal with - equations
are more complicated ,

with more integral summations
, and

storage requirements increase rapidly .
We might therefore

consider the generation  of 3- body terms an unacceptable
( but  inevitable ) consequence of eliminating Undesired modes .

However
,

in nuclear physics we need to deal with
3N forces anyway ,

so this actually doesn't impose
much of  an additional burden

.



Incidentally ,
these original 3N forces can be understood

in the context of renormalization as having arisen

due to
"

integrating out
"

other degrees of freedom -

not just high momenta this time
,

but different particles
such as the Dlk32) excitation  of the nucleon

,
or

heavy mesons
,

e. g .

N N N

I÷it⇐f:⇒t÷f÷t
.

N N N

Both the You
.

and SRG formulations can in principle
Accommodate 3- body forces

.
However

, especially if we work

in Momentum space ,
the Yowk formulation is more awkward

.

It requires a generalization of the Tmatrix to 3- body
Scattering and then requires the solution  of the

Lippmann - Schwinger equation for all bound and scattering
States - including nuclear . deuteron scattering - at every

integration step .
To my knowledge,

this has not been

implemented .
Further

,
we now have two Jacobi Momenta

,

and it's not immediately obvious how to consistently regulate them
.

3One Can work in a discrete basis
, %

a

eg .
harmonic oscillator

,
but then

,

this requires Us to  impose some
%

1 •

Artificial Trap . P
.

>
%
2
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On the other hand
,

the SRG Is formulated as

a unitary transformation
Host Ucssltiosucss

and so we may Apply exactly the same transformation to

the 3N sector Unambiguously . There  is
,

of course
,

no

getting around the increase  in required storage .
But

this is manageable .

Example : SRG diagonalization  of a 2×2 matrix

Consider a Hamiltonian acting on a 2- state Hilbert space .

This can be represented by a Hermitian 2×2 matrix :

H⇐d=/ Edt )

We wish to drive this matrix towards the diagonal .
We

could define Hd= (FED and choose a canonical

generator Meant [ Hd ,H]
.

This will work ; however for this

case another Choice is nicer for an analytic solution :

M= ¥ - h .c .
with BE Ez - E

,

so y=e÷al8#
.

Note that with this choice M is dimensionless .
Our flow

equation is then

gsµ=[mµ]=¥e
, @HE'¥d - ki¥kFYD

= ¥ ,(
-2142 - ( e. e.) v*

- Cez - EDV  +2142 )
.



So we have four differential equations

Feeds) -
- 2¥¥

, ,
oats VEs= - Yoss

d d
Es Us) = - Us )

,
as Ercs ) =  + 2t¥e

,

The

solutions
for V and V* are easy

VCs) = Vlo )e→
.

We see that the  off . diagonal piece  is suppressed exponentially
as we flow in s

.
The equations for E ,

and Ez

can be solved by Changing variables

£ (g) =

G 's

'+z⇐↳'

,
DG ) = Ezcs ) - E. ( s )

then did E- G) = £ # Gtotdsed = 0
,

and

adsscs) -

4¥'T
⇒ boss Isacs

)=4Nnte
's

Isais , =Austen
Acs ) = Bios + 4|VasI2( 1- E

" )

So the gap grows with increasing s
, asymptoting to

the correct answer

Dcx ) = D2w)t41V# •



-Ezls ) -

M
•

E. ( s ) - \
> >

5 g



Fock space formulation

In the 2×2 system we just looked at
,

as well as

the pairing model problem  we have considered
,

it

is possible to write the Hamiltonian as a matrix

in a Hilbert space . In such a case
,

the SRG

amounts to a method for diagonalizing a matrix
,

though not a particularly efficient  one - it  is

essentially a generalization  of the Jacobi iterative

method .

If we do not integrate all the way to the fixed

point ( where ¥sH=o)
,

then we have
"

pre . diagonalized
"

the

matrix - that  is
,

we have transformed it to a

more diagonal form
.

Quite  often  in many - body systems ,
we deal with systems

for which the dimension  of the full Hilbert space

is so large that it  is impractical or impossible to

form the relevant matrix and diagonal 'te  it
. In such

Cases
,

we rely on the few . body character  of the

Hamiltonian - essentially making a cluster expansion - and

express the Hamiltonian  and other operators in terms

of creation / annihilation operators acting on a Fook space .

The Hamiltonian  is then

It  = { Hpqdjaq + ¥§.tt#sap*dgasar +
.  . .

where the ... represents ( irreducible ) 34,5 etc . body operators ,
And

p ,q,r,s run over  some discrete  single - particle basis
.



The SRG generator M can likewise be  expressed as

A Fook space ( or second . quantized) operator

m= §qy¥daIaq+¥§µ7fYnaIaIasar +
. . .

The anti - hermiticity of z is encoded by the

requirement Mpq=
- Mqp , Ypqrsi -

Mrspq
etc

.

Our flow equation ,

dash  = ( m ,H ]

Can be expressed in terms of the coefficients of

the creation / annihilation operators by collecting
together terms with a given number of creation

annihilation  operators . For concreteness
,

lets assume

It  and M are initially 2- body operators . Then

[y,H]= fgnpgHrs@Iaq.a'ias]

+ ¥§y(7p.rs#ti7tuHpqrs)fapaq+asar,attaif

+

Keser
,

Mpqrstttuvwfatpatgasar,attaiiawav ] .

Beginning with the fundamental Anticommutatron  relations

[atp.at]+=[ ap ,aq]+=0 , [ af,ag]+=[ ap,ag+]+= Spa

we can work out the abovecommentators
.



Relevant commentators :

[ atpaq ,
artas ] - atpassqr - atraqssp

[atpatgasar
, attau ]=atpdgasausatdpaoiauarsst - ataoiasarspu - atpattasarsqu

[atpatgasar
,

attaiiawav ] - aptatgawav ( Srtssu . Suisse) - aetauasar ( Spvsqw - Spwsqv )

+ Atpagatuawavarsst + dtapaqasawavsur

induced + djagaiiawasavsrttdpdatqawauarssu
sfebromdy ( . a ;a ,@ a. a avg.w.at ,

# , a a. a. an

- attaiiatqasawarspr - attdpauasaravsqw .

We can  collect like terms to find

d¥ Hpq = § Mpa Haq - Haptfqa

did Hpqrs  
= § Mpqas Hart Mpqratlas - Maqrsltpa -

Mpars Hora

- Hpqas Mar - Hpqra Mas + Haqrsypa + Hpars Mara

+ ¥ § Mpqab Halers - Mpqab Hbars - Hpqab Mabrs + Hpqab Mears .

These expressions can be simplified assuming we work with

Antisymmetrized matrix elements ( Hpqrs  
= - Hpqsr ) .



Introducing
the index exchange operator Pij

Pij Hp
. . .i

. .j . . .
 

= ftp..is . . .i
...

we have

d¥ Hpq = § Mpa Haq - Haptfqa

oats Hpqrs  
= § (l -Prs) (Mpqas Har - Hpqasmar) - (⇒  g) (Mparsttqa - tlparsiyqa)

+ £{ay(Mpqabttabrs - Hpqab Mabrs) .

As we can see from our commutator expressions ,

we also  induce A 3- body piece Hpqrstu

¥s Hpqrstu  
= § (1-BEPSD @ pqsaHartu-HpqsaMarta )

.

This  is  a more precise statement of  our earlier observation

that removing modes ( or coupling to  modes ) Will lead Io

3- body forces
.

As soon as It has a 3- body Component,
then there is a new term in the flow equation

d#
as =

•  . .

+ # tED.FewxyypwsHtwwxyf@ptaIasaB.EaIaIatva.a,aw}]

This commentator will lead to 4-body forces and so on
.

Keeping track of all these terms is completely infeasible
for systems of interest in nuclear physics so



we must make some approximation .
A  useful choice  is

to neglect all operators above a given particle rank
,

e.g. 2- body .

Is this justified ? If we start at s=o with

the 4- body force equal to zero
,

at least early
in the flow  it should stay small

.

So long
as the 4- body term Is small

,
the induced

5- body term must be small
,

and so on .

So it is reasonable that this is a good
expansion .

Of course
,

later in the flow the 4-body

part could grow larger and spoil everything .

In principle ,
One should keep enough terms to be

sure that higher terms are small
. In practice ,

this

is not always feasible and we are left hoping .

We do have at least one diagnostic : if the approximation
is a good one

,
then our computed observables

should be independent of the flow parameter s .

Any flow parameter dependence is an indication  of

physics being lost  in the truncation
.

Note : In practice the SRG is performed not with a

Fock space formulation
,

but in a relative coordinate

or Jacobi basis
,

either using plane waves or

an Oscillator basis
. This  is because the Fook space

formulation  includes the irrelevant Center . of - mass motion

And so Is less efficient .


