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In the previous lecture...

What you have learned:

•What is the Berggren basis and how to generate one.

What you will learn (hopefully):

•How several many-body methods were extended using the Berggren basis.
1) The Gamow shell model.
2) The density matrix renormalization group approach for open quantum systems.
3) The coupled clusters theory in the Berggren basis.

FRIB, MSU - Kévin Fossez 2



Present situation in low-energy nuclear physics

Experimental developments:
•Development of powerful rare isotope beam facilities of
new generation.

•Powerful equipment (separators, detectors, etc.) provi-
ding better resolution.

Computing:
•Exponential increase in
computational power.

•Better parallel
algorithms.

Theorists were not idly
sitting around either...

The 2015 Long Range Plan for Nuclear Science by the Nuclear Science Advisory Committee, Top500.org.FRIB, MSU - Kévin Fossez 3



Trends in low-energy nuclear theory

•Effective field theory.
→ Interactions with systematic improvements.

•Renormalization group techniques.
→ Similarity RG, improved convergence in

many-body methods.

•Ab initio methods.
→ Coupled clusters, in-medium SRG, truncations

in correlations.

•Uncertainty quantification.
→ Feedback interaction/many-body observables,

Bayes.

•Couplings to the continuum.
→ Berggren, density matrix RG, natural orbitals.

•Microscopic optical potentials.
→ Dispersion optical model, ab initio potentials.

Input
forces, operators

Open
channels

Many-body
dynamics

● Insights from EFT
● Uncertainty quantifica-
tion

● Unified picture of structure and reactions

● Ab initio techniques
● High-performance computing
● Interdisciplinary connections

Figure adapted from W. Nazarewicz, J. Phys. G 43 044002 (2016)FRIB, MSU - Kévin Fossez 4



However, limitations are already visible.

•Interaction:
→ In practice, similar reproduction of data by EFT and phenomenological interactions.
→ Proliferation of EFT interactions.

•Ab initio:
→ Full three-body forces essential, but out of reach for most systems at present.
→ Difficult to go beyond existing approximations.

•Uncertainty quantification:
→ Costly to estimate.

•Continuum couplings:
→ Computationally very expensive to include (e.g. NCSMC, GSM-CC).

•Reaction theory:
→ Optical potentials limited in energy range or by the fitting data.

E = 0

discretize
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Reminder on the Berggren basis

The Berggren basis:
→ Single particle basis including bound states, decaying resonances and scattering states.
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The Berggren basis in many-body methods

First use of the Berggren basis in structure calculations (CI):

•R. M. Id Betan, R. J. Liotta, N. Sandulescu and T. Vertse (Stockholm-Debrecen group),
Phys. Rev. Lett. 89, 042501 (2002).
—Two-particle resonant states in a many-body mean field.—

•N. Michel, W. Nazarewicz, M. Płoszajczak and K. Bennaceur (Oak Ridge-GANIL group),
Phys. Rev. Lett. 89, 042502 (2002).
—Gamow shell model description of neutron-rich nuclei.—

Beyond the Gamow shell model:

•Realistic (effective) GSM interactions:
G. Hagen et al., Phys. Rev. C 71, 044314 (2005), Phys. Rev. C 73, 064307 (2006).

•DMRG: J. Rotureau et al., Phys. Rev. Lett. 97, 110603 (2006).
•Coupled clusters + Berggren: G. Hagen et al., Phys. Lett. B 656, 169 (2007).
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The Gamow shell model

Quasi-stationary formulation of the shell model:

Closed quantum
system

Bound states

Threshold

Bound states

Resonances

Scattering continuum

Open quantum
system

s.p. HO states
(bound)

MEs SDs

H matrix

Many-body
bound states

s.p. Berggren states
(resonant, scatt.)

cont. discretization

MEs SDs

H matrix

identification

Many-body bound
states, resonances

and scattering states

N. Michel et al., J. Phys. G 36, 013101 (2009)FRIB, MSU - Kévin Fossez 8



The Gamow shell model

Dense, complex-symmetric Hamiltonian matrix:

⎛

⎜
⎜

⎝

z00 z10 z20
z10 z11 z21
z20 z21 z22

⎞

⎟
⎟

⎠

Dense: up to a few percents of nonzero matrix elements.
Complex-symmetrix: There can be a vector Z ≠ 0 such as ZTZ = 0.

Factorial wall: both in terms of matrix elements density and matrix dimension!

Overlap method:

s.p. poles

s.p. scatt.

{SD(N)0 }

(pole space)

{SD(N)1 }

(full space)

H0

H1

∣Ψ0⟩

(pivot)

Davidson
(2D) ∣Ψ1⟩

Many-body resonant solutions
are poles of the many-body S-
matrix.

Useful to find eigenstates in
large-scale problems where full
diagonalization is impossible.

Claim: Solutions in the pole space are many-body S-matrix poles.
→ True if s.p. poles ≈ natural orbitals.
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The Gamow shell model for reactions

A general problem for many-body methods in the Berggren basis:

When using the Berggren basis, many-body eigenstates are expressed using Slater determinants (or
just one):

∣Ψ(A)⟩ =∑
i

ai ∣SD(A)i ⟩ , Ĥ ∣Ψ(A)⟩ = E ∣Ψ(A)⟩ , E = e − iΓ/2.

However, the width Γ is the total width, it does not tell anything about the decay channels
∣Φc⟩ = ∣Ψ(A−1)⟩⊗ ∣`, j⟩:

⟨Ψ(A)∣Φc0⟩ ≠ 0, ⟨Ψ(A)∣Φc1⟩ ≠ 0 ⇒ Γ =∑

c
Γc .

There is no known way to extract reaction channels from a configuration-interaction (CI) method,
they must be included by hand using the resonating group method (RGM).
→ This is why the GSM was formulated in the coupled-channels formalism using the RGM.
(I am not going to explain how, this is not a reaction theory lecture...)

Y. Jaganathen et al., Phys. Rev. C 89, 034624 (2014); K. Fossez et al., Phys. Rev. C 91, 034609 (2015)
F. de Grancey, A. Mercenne et al., Phys. Lett. B 758, 26 (2016)
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The density matrix renormalization group method

Two powerful ideas: renormalization group + density matrix based truncation scheme.

subspace

sp
ac
e RG-evolved

subspace

self-similarity

•The RG-evolved subspace
is a compressed version of
the whole space. It looks
the same.

•Keeping all the information
is computationally expen-
sive. A truncation scheme
is helpful.

•One can write the many-
body wave function in a
factorized form.

S. R. White, Phys. Rev. Lett. 69, 2863 (1992); S. R. White, Phys. Rev. B 48, 10345 (1993)FRIB, MSU - Kévin Fossez 11



The density matrix renormalization group method

Density matrix based truncation scheme:

(n, `, j)

reference
space (h)

environment/
medium (p)

•Many-body wave function: ∣Ψ⟩ =∑
h,p

Ψh,p ∣h⟩⊗ ∣p⟩.

•Density matrix reduced in the reference space:
ρ
(r)
p,p′ =∑

h
Ψh,pΨh,p′ .

•The eigenvectors of ρ(r)p,p′ are linear combinations of
the original (n, `, j) shells.

•The eigenvalues {εn} of ρ(r)p,p′ measure the impor-
tance of the new shells in the many-body wave
function.

→ The DMRG criterion: εn > ε (gently breaks the many-body completeness).

J. Dukelsky and G. G. Dussel, Phys. Rev. C 59, R3005(R) (1999), J. Dukelsky and S. Pittel, Rep. Prog. Phys. 67, 513 (2004)
T. Papenbrock and D. J. Dean, J. Phys. G 31, S1377 (2005)
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The density matrix renormalization group method

DMRG for the nuclear many-body problem:

•Works well in condensed matter (sites, neighboors only) or cold atom physics (contact interaction).
•In the shell model, HO shells are significantly different than natural orbitals (for a given state).
•The nuclear interaction acts on nucleons even if they are on different (distant) shells.

M-scheme DMRG:
•Seemed to work using simple Ĥ, but slow convergence to wrong energies with realistic interactions.
•Little by little, the DMRG truncation breaks the rotational invariance in the M-scheme.

J-scheme DMRG:
•Correct energies in the J-scheme, but still slow convergence (HO, HF shells).
•Important increase of the complexity of the algorithm.

In principle, one must do a warm-up, sweep-down, sweep-up, etc.

S. Pittel and J. Dukelsky, Rev. Mex. Fis. 49 Supl. 4, 82 (2003),
J. Dukelsky and S. Pittel, Rep. Prog. Phys. 67, 513 (2004)
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The DMRG method for open quantum systems

Gamow-DMRG or DMRG in the Berggren basis:
•In the Berggren basis there are: 1) resonant/pole states, and 2) scattering/continuum states.
→ Natural division that fits well the reference space vs. medium DMRG division.

H ≈ s.p.
pole

P (s.p.
poles/scatt.)

{SD(0)0 ,SD(1)0 , ...,SD(N)0 }

{SD(0)1 ,SD(1)1 , ...,SD(N)1 }

H0

H1

Ψ0

(pivot)

Davidson Ψ1
ρ1(j , j ′) =∑

h
Ψj,hΨj ′,h

{φ
(0)
1 , φ

(1)
1 , ..., φ

(N)
1 }

select
ε > 10−8

{Φ(0)1 ,Φ(1)1 , ...,Φ(N)1 }

{SD(0)2 ,SD(1)2 , ...,SD(N)2 } H2 Davidson Ψ2 etc.

Formulated in J-scheme, makes use of natural orbitals.

First proposed in Rev. Mex. Fis. 5 Suplemento 2, 74 (2004),
J. Rotureau et al., Phys. Rev. Lett. 97, 110603 (2006), J. Rotureau et al., Phys. Rev. C 79, 014304 (2009)
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The coupled clusters theory

A powerful method: similarity transformation on a normal-ordered Hamiltonian:

•Reference state ∣Φ⟩ treated as an effective vaccum using normal-ordering.
•Similarity transformation (non-unitary) to avoid building the Ĥ matrix.

Ĥ =∑

p,q
εpq â†

p âq +
1
4 ∑p,q,r,s

⟨pq∣∣rs⟩ â†
p â†

q âs âr

= E0 +∑
p,q

fpq{â†
p âq} +

1
4 ∑p,q,r,s

Γpqrs{â†
p â†

q âs âr} = E0 +HN .

⟨Φ∣ĤN ∣Φ⟩ = 0,

H̄ = eT̂ ĤNe−T̂ ,

T̂ =

A
∑

n=1
T̂n.

T̂n = (
1
n!
)

2
∑

i1,i2,...,in
a1,a2,...,an

ta1,a2,...,an
i1,i2,...,in â†

a1 â
†
a2⋯â†

an âi1 âi2⋯âin .

→ Set of non-linear equations for the amplitudes.

εF

1p1h

∣Φ⟩

εF

2p2h
G. Hagen et al., Rep. Prog. Phys. 77, 096302 (2014)FRIB, MSU - Kévin Fossez 15



The coupled clusters theory

In the Berggren basis:

•Non-symmetric Ĥ matrix → complex non-symmetric.
•Does not care much about the size of the s.p. basis!
•Most exotic nuclei can be described with one and two particles in the continuum.

discretized
continuum

εF

1p1h

∣Φ⟩

Identification of many-body resonances:

s.p. poles

s.p. scatt.

Gamow-HF ∣Φ⟩ = ∣SD⟩pole

ĤNH̄ = eT̂ ĤNe−T̂

non-linear eqs. E

→ Size-extensive approach for nuclear open quantum systems.
G. Hagen et al., Phys. Lett. B 656, 169 (2007)FRIB, MSU - Kévin Fossez 16



Known issues

Several issues are still bothering practitioners:
•Identification of many-body resonances in the complex energy spectrum
(especially for broad resonances).

•Factorization of the intrisic and center-of-mass eigenstates in ab initio calculations.
•Reduction of the basis size (s.p. or many-body).
•Diagonalization of complex-symmetric matrices.
•Interpretation of complex observables.
•No access to individual decay channels (requires a RGM extension).
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Summary

Many-body methods in the Berggren basis:
•Several techniques have been extended successfully into the continuum.

Structure
core+valence A-body

GSM NCGSM

Structure
observables

G-DMRG
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±
2
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an
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←

fe
w
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y
Reactions

Many-body Effective pot.

GSM+RGM CC

Eff. pot.
+ Green func.

React. th.

Reaction
observables

•Still a lot of work must be done to unified nuclear structure and reactions.
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Thank you for your attention!
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	Appendix

