Lecture III-a: Many-body methods for nuclear open quantum systems

Michigan State University (MSU), Facility for Rare Isotope Beams (FRIB)

Kévin Fossez August 1-3, 2018

FRIB, MSU - TALENT 2018, China

FRIB, MSU - Kévin Fossez

Work supported by: DOE: DE-SC0013365 (Michigan State University) DOE: DE-SC0017887 (Michigan State University) DOE: DE-SC0008511 (NUCLEI SciDAC-4 collaboration) NSF: PHY-1403906

What you have learned:

• What is the Berggren basis and how to generate one.

What you will learn (hopefully):

- How several many-body methods were extended using the Berggren basis.
- 1) The Gamow shell model.
- 2) The density matrix renormalization group approach for open quantum systems.
- 3) The coupled clusters theory in the Berggren basis.

Present situation in low-energy nuclear physics

FRIB, MSU - Kévin Fossez

The 2015 Long Range Plan for Nuclear Science by the Nuclear Science Advisory Committee, Top500.org.

Trends in low-energy nuclear theory

• Effective field theory.

 \rightarrow Interactions with systematic improvements.

• Renormalization group techniques.

 \rightarrow Similarity RG, improved convergence in many-body methods.

• Ab initio methods.

→ Coupled clusters, in-medium SRG, truncations in correlations.

Uncertainty quantification.

- \rightarrow Feedback interaction/many-body observables, Bayes.
- Couplings to the continuum.
 - \rightarrow Berggren, density matrix RG, natural orbitals.

Microscopic optical potentials.

 \rightarrow Dispersion optical model, *ab initio* potentials.

Interaction:

- \rightarrow In practice, similar reproduction of data by EFT and phenomenological interactions.
- \rightarrow Proliferation of EFT interactions.

• Ab initio:

- \rightarrow Full three-body forces essential, but out of reach for most systems at present.
- \rightarrow Difficult to go beyond existing approximations.

• Uncertainty quantification:

 \rightarrow Costly to estimate.

Continuum couplings:

 \rightarrow Computationally very expensive to include (e.g. NCSMC, GSM-CC).

Reaction theory:

 \rightarrow Optical potentials limited in energy range or by the fitting data.

discretize

Reminder on the Berggren basis

The Berggren basis:

 \rightarrow Single particle basis including bound states, decaying resonances and scattering states.

The Berggren basis in many-body methods

First use of the Berggren basis in structure calculations (CI):

 R. M. Id Betan, R. J. Liotta, N. Sandulescu and T. Vertse (Stockholm-Debrecen group), Phys. Rev. Lett. 89, 042501 (2002).

-Two-particle resonant states in a many-body mean field.-

 N. Michel, W. Nazarewicz, M. Płoszajczak and K. Bennaceur (Oak Ridge-GANIL group), Phys. Rev. Lett. 89, 042502 (2002).

-Gamow shell model description of neutron-rich nuclei.-

Beyond the Gamow shell model:

- Realistic (effective) GSM interactions:
 - G. Hagen et al., Phys. Rev. C 71, 044314 (2005), Phys. Rev. C 73, 064307 (2006).
- DMRG: J. Rotureau et al., Phys. Rev. Lett. 97, 110603 (2006).
- Coupled clusters + Berggren: G. Hagen et al., Phys. Lett. B 656, 169 (2007).

The Gamow shell model

Quasi-stationary formulation of the shell model:

The Gamow shell model

Dense, complex-symmetric Hamiltonian matrix:

(z_{00})	<i>z</i> ₁₀	z_{20}
z_{10}	z_{11}	<i>z</i> ₂₁
Z_{20}	z_{21}	$z_{22})$

Dense: up to a few percents of nonzero matrix elements.

Complex-symmetrix: There can be a vector $Z \neq 0$ such as $Z^T Z = 0$.

Factorial wall: both in terms of matrix elements density and matrix dimension!

Overlap method:

Claim: Solutions in the pole space are many-body *S*-matrix poles. \rightarrow True if s.p. poles \approx natural orbitals.

Many-body resonant solutions are poles of the many-body *S*-matrix.

Useful to find eigenstates in large-scale problems where full diagonalization is impossible.

A general problem for many-body methods in the Berggren basis:

When using the Berggren basis, many-body eigenstates are expressed using Slater determinants (or just one):

$$|\Psi^{(A)}\rangle = \sum_{i} a_{i} |\mathrm{SD}_{i}^{(A)}\rangle, \qquad \hat{H} |\Psi^{(A)}\rangle = E |\Psi^{(A)}\rangle, \qquad E = e - i\Gamma/2.$$

There is no known way to extract reaction channels from a configuration-interaction (CI) method, they must be included by hand using the resonating group method (RGM).

 \rightarrow This is why the GSM was formulated in the coupled-channels formalism using the RGM. (I am not going to explain how, this is not a reaction theory lecture...)

FRIB, MSU - Kévin Fossez

The density matrix renormalization group method

Two powerful ideas: renormalization group + density matrix based truncation scheme.

- The RG-evolved subspace is a compressed version of the whole space. It looks the same.
- Keeping all the information is computationally expensive. A truncation scheme is helpful.
- One can write the manybody wave function in a factorized form.

FRIB, MSU - Kévin Fossez

The density matrix renormalization group method

Density matrix based truncation scheme:

- Many-body wave function: $|\Psi\rangle = \sum_{h,\rho} \Psi_{h,\rho} |h\rangle \otimes |p\rangle$.
- Density matrix reduced in the reference space: $\rho_{p,p'}^{(r)} = \sum_{h} \Psi_{h,p} \Psi_{h,p'}.$
- The eigenvectors of $\rho_{p,p'}^{(r)}$ are linear combinations of the original (n, ℓ, j) shells.
- The eigenvalues $\{\varepsilon_n\}$ of $\rho_{p,p'}^{(r)}$ measure the importance of the new shells in the many-body wave function.

→ The DMRG criterion: $\varepsilon_n > \varepsilon$ (gently breaks the many-body completeness).

FRIB, MSU - Kévin Fossez

J. Dukelsky and G. G. Dussel, Phys. Rev. C 59, R3005(R) (1999), J. Dukelsky and S. Pittel, Rep. Prog. Phys. 67, 513 (2004) T. Papenbrock and D. J. Dean, J. Phys. G 31, S1377 (2005)

DMRG for the nuclear many-body problem:

- Works well in condensed matter (sites, neighboors only) or cold atom physics (contact interaction).
- In the shell model, HO shells are significantly different than natural orbitals (for a given state).
- The nuclear interaction acts on nucleons even if they are on different (distant) shells.

M-scheme DMRG:

- Seemed to work using simple \hat{H} , but slow convergence to wrong energies with realistic interactions.
- Little by little, the DMRG truncation breaks the rotational invariance in the M-scheme.

J-scheme DMRG:

- Correct energies in the *J*-scheme, but still slow convergence (HO, HF shells).
- Important increase of the complexity of the algorithm.

In principle, one must do a warm-up, sweep-down, sweep-up, etc.

The DMRG method for open quantum systems

Gamow-DMRG or DMRG in the Berggren basis:

- In the Berggren basis there are: 1) resonant/pole states, and 2) scattering/continuum states.
- \rightarrow Natural division that fits well the reference space vs. medium DMRG division.

Formulated in J-scheme, makes use of natural orbitals.

FRIB, MSU - Kévin Fossez

First proposed in Rev. Mex. Fis. 5 Suplemento 2, 74 (2004),

J. Rotureau et al., Phys. Rev. Lett. 97, 110603 (2006), J. Rotureau et al., Phys. Rev. C 79, 014304 (2009)

14

The coupled clusters theory

A powerful method: similarity transformation on a normal-ordered Hamiltonian:

- Reference state $|\Phi\rangle$ treated as an effective vaccum using normal-ordering.
- Similarity transformation (non-unitary) to avoid building the \hat{H} matrix.

FRIB, MSU - Kévin Fossez

G. Hagen et al., Rep. Prog. Phys. 77, 096302 (2014)

The coupled clusters theory

In the Berggren basis:

- Non-symmetric \hat{H} matrix \rightarrow complex non-symmetric.
- Does not care much about the size of the s.p. basis!
- Most exotic nuclei can be described with one and two particles in the continuum.

Identification of many-body resonances:

 \rightarrow Size-extensive approach for nuclear open quantum systems.

G. Hagen et al., Phys. Lett. B 656, 169 (2007)

FRIB. MSU - Kévin Fossez

Known issues

Several issues are still bothering practitioners:

- Identification of many-body resonances in the complex energy spectrum (especially for broad resonances).
- Factorization of the intrisic and center-of-mass eigenstates in *ab initio* calculations.
- Reduction of the basis size (s.p. or many-body).
- Diagonalization of complex-symmetric matrices.
- Interpretation of complex observables.
- No access to individual decay channels (requires a RGM extension).

Many-body methods in the Berggren basis:

• Several techniques have been extended successfully into the continuum.

• Still a lot of work must be done to unified nuclear structure and reactions.

Thank you for your attention!