Motivation

Having access to precise measurements of masses, radii, and electromagnetic moments for a wide range of nuclei allows to study trends with varying neutron excess. A quantitative description of various experimental data with quantified uncertainty still remains a major challenge for nuclear structure theory. Global theoretical studies of isotopic chains, such as the Ca chain shown in the figure below here, make it possible to test systematic properties of effective interactions between nucleons. Such calculations also provide critical tests of limitations of many-body methods. As one approaches the particle emission thresholds, it becomes increasingly important to describe correctly the coupling to the continuum of decays and scattering channels. While the full treatment of antisymmetrization and short-range correlations has become routine in first principle approaches (to be defined later) to nuclear bound states, the many-body problem becomes more difficult when long-range correlations and continuum effects are considered.