With these definitions the Schroedinger equation takes the following form $$ d_iu_i+e_{i-1}u_{i-1}+e_{i+1}u_{i+1} = \lambda u_i, $$ where \( u_i \) is unknown. We can write the latter equation as a matrix eigenvalue problem $$ \begin{equation} \left( \begin{array}{ccccccc} d_1 & e_1 & 0 & 0 & \dots &0 & 0 \\ e_1 & d_2 & e_2 & 0 & \dots &0 &0 \\ 0 & e_2 & d_3 & e_3 &0 &\dots & 0\\ \dots & \dots & \dots & \dots &\dots &\dots & \dots\\ 0 & \dots & \dots & \dots &\dots &d_{n_{\mathrm{step}}-2} & e_{n_{\mathrm{step}}-1}\\ 0 & \dots & \dots & \dots &\dots &e_{n_{\mathrm{step}}-1} & d_{n_{\mathrm{step}}-1} \end{array} \right) \left( \begin{array}{c} u_{1} \\ u_{2} \\ \dots\\ \dots\\ \dots\\ u_{n_{\mathrm{step}}-1} \end{array} \right)=\lambda \left( \begin{array}{c} u_{1} \\ u_{2} \\ \dots\\ \dots\\ \dots\\ u_{n_{\mathrm{step}}-1} \end{array} \right) \tag{7} \end{equation} $$