The SPME for the \( E\lambda \) operator is given by $$ \langle k_{a}\vert\vert O(E\lambda )\vert\vert k_{b}\rangle=(-1)^{j_{a}+1/2}\frac{[1+(-1)^{l_{a}+\lambda +l_{b}}]}{2} $$ $$ \times\sqrt{ {(2j_{a}+1)(2\lambda +1)(2j_{b}+1)\over4\pi }}\left(\begin{array}{ccc} {j_{a}}& {\lambda} & {j_{b}}\\ {1/2} & {0}& {-1/2}\end{array}\right)\langle k_{a}\vert r^{\lambda }\vert k_{b}\rangle e_{q} e. $$