Electromagnetic multipole moments and transitions

The most common choice is to start with the function which is expected to exhibit the largest overlap with the wave function we are searching after, namely \( \vert \Phi_0\rangle \). This can again be inserted in the solution for \( \vert \Psi_0\rangle \) in an iterative fashion and if we continue along these lines we end up with $$ \vert \Psi_0\rangle=\sum_{i=0}^{\infty}\left\{\frac{\hat{Q}}{\omega-\hat{H}_0}\left(\omega-E+\hat{H}_I\right)\right\}^i\vert \Phi_0\rangle, $$ for the wave function and $$ \Delta E=\sum_{i=0}^{\infty}\langle \Phi_0\vert \hat{H}_I\left\{\frac{\hat{Q}}{\omega-\hat{H}_0}\left(\omega-E+\hat{H}_I\right)\right\}^i\vert \Phi_0\rangle, $$ which is now a perturbative expansion of the exact energy in terms of the interaction \( \hat{H}_I \) and the unperturbed wave function \( \vert \Psi_0\rangle \).