Inserted in the expression for \( \Delta E \) leads to $$ \Delta E= \langle \Phi_0\vert \hat{H}_I+\hat{H}_I\hat{Q}\frac{1}{E-\hat{H}_0-\hat{Q}\hat{H}_I\hat{Q}}\hat{Q}\hat{H}_I\vert \Phi_0\rangle. $$ In RS perturbation theory we set \( \omega = W_0 \) and obtain the following expression for the energy difference $$ \Delta E=\sum_{i=0}^{\infty}\langle \Phi_0\vert \hat{H}_I\left\{\frac{\hat{Q}}{W_0-\hat{H}_0}\left(\hat{H}_I-\Delta E\right)\right\}^i\vert \Phi_0\rangle= $$ $$ \langle \Phi_0\vert \left(\hat{H}_I+\hat{H}_I\frac{\hat{Q}}{W_0-\hat{H}_0}(\hat{H}_I-\Delta E)+ \hat{H}_I\frac{\hat{Q}}{W_0-\hat{H}_0}(\hat{H}_I-\Delta E)\frac{\hat{Q}}{W_0-\hat{H}_0}(\hat{H}_I-\Delta E)+\dots\right)\vert \Phi_0\rangle. $$