In our equations for \( \vert \Psi_0\rangle \) and \( \Delta E \) in terms of the unperturbed solutions \( \vert \Phi_i\rangle \) we have still an undetermined parameter \( \omega \) and a dependecy on the exact energy \( E \). Not much has been gained thus from a practical computational point of view.
In Brilluoin-Wigner perturbation theory it is customary to set \( \omega=E \). This results in the following perturbative expansion for the energy \( \Delta E \) $$ \Delta E=\sum_{i=0}^{\infty}\langle \Phi_0\vert \hat{H}_I\left\{\frac{\hat{Q}}{\omega-\hat{H}_0}\left(\omega-E+\hat{H}_I\right)\right\}^i\vert \Phi_0\rangle= $$ $$ \langle \Phi_0\vert \left(\hat{H}_I+\hat{H}_I\frac{\hat{Q}}{E-\hat{H}_0}\hat{H}_I+ \hat{H}_I\frac{\hat{Q}}{E-\hat{H}_0}\hat{H}_I\frac{\hat{Q}}{E-\hat{H}_0}\hat{H}_I+\dots\right)\vert \Phi_0\rangle. $$