Recalling that \( \hat{Q} \) commutes with \( \hat{H_0} \) and since \( \Delta E \) is a constant we obtain that $$ \hat{Q}\Delta E\vert \Phi_0\rangle = \hat{Q}\Delta E\vert \hat{Q}\Phi_0\rangle = 0. $$ Inserting this results in the expression for the energy results in $$ \Delta E=\langle \Phi_0\vert \left(\hat{H}_I+\hat{H}_I\frac{\hat{Q}}{W_0-\hat{H}_0}\hat{H}_I+ \hat{H}_I\frac{\hat{Q}}{W_0-\hat{H}_0}(\hat{H}_I-\Delta E)\frac{\hat{Q}}{W_0-\hat{H}_0}\hat{H}_I+\dots\right)\vert \Phi_0\rangle. $$