Isospin

This leads to the introduction of an additional quantum number called isospin. We can define a single-nucleon state function in terms of the quantum numbers \( n \), \( j \), \( m_j \), \( l \), \( s \), \( \tau \) and \( \tau_z \). Using our definitions in terms of an uncoupled basis, we had $$ \psi_{njm_j;ls}=\sum_{m_lm_s}\langle lm_lsm_s|jm_j\rangle\phi_{nlm_lsm_s}, $$ which we can now extend to $$ \psi_{njm_j;ls}\xi_{\tau\tau_z}=\sum_{m_lm_s}\langle lm_lsm_s|jm_j\rangle\phi_{nlm_lsm_s}\xi_{\tau\tau_z}, $$ with the isospin spinors defined as $$ \xi_{\tau=1/2\tau_z=+1/2}=\left(\begin{array}{c} 1 \\ 0\end{array}\right), $$ and $$ \xi_{\tau=1/2\tau_z=-1/2}=\left(\begin{array}{c} 0 \\ 1\end{array}\right). $$ We can then define the proton state function as $$ \psi^p(\mathbf{r}) =\psi_{njm_j;ls}(\mathbf{r})\left(\begin{array}{c} 0 \\ 1\end{array}\right), $$ and similarly for neutrons as $$ \psi^n(\mathbf{r}) =\psi_{njm_j;ls}(\mathbf{r})\left(\begin{array}{c} 1 \\ 0\end{array}\right). $$