A \( 9j \) symbol is invariant under reflection in either diagonal $$ \begin{Bmatrix} j_1 & j_2 & j_3\\ j_4 & j_5 & j_6\\ j_7 & j_8 & j_9 \end{Bmatrix} = \begin{Bmatrix} j_1 & j_4 & j_7\\ j_2 & j_5 & j_8\\ j_3 & j_6 & j_9 \end{Bmatrix} = \begin{Bmatrix} j_9 & j_6 & j_3\\ j_8 & j_5 & j_2\\ j_7 & j_4 & j_1 \end{Bmatrix}. $$ The permutation of any two rows or any two columns yields a phase factor \( (-1)^S \), where $$ S=\sum_{i=1}^9 j_i. $$ As an example we have $$ \begin{Bmatrix} j_1 & j_2 & j_3\\ j_4 & j_5 & j_6\\ j_7 & j_8 & j_9 \end{Bmatrix} = (-1)^S \begin{Bmatrix} j_4 & j_5 & j_6\\ j_1 & j_2 & j_3\\ j_7 & j_8 & j_9 \end{Bmatrix} = (-1)^S \begin{Bmatrix} j_2 & j_1 & j_3\\ j_5 & j_4 & j_6\\ j_8 & j_7 & j_9 \end{Bmatrix}. $$