Angular momentum algebra, Wigner-Eckart theorem

With the modified quantity $$ \tilde{T}^{\lambda}_{\mu}=(-1)^{\lambda+\mu}(T^{\lambda}_{-\mu})^{\dagger}, $$ we can then define the expectation value $$ \langle \Phi^J_M|T^{\lambda}_{\mu}|\Phi^{J'}_{M'}\rangle^{\dagger} = \langle \lambda \mu J'M'|JM\rangle\langle \Phi^J||T^{\lambda}||\Phi^{J'}\rangle^*, $$ since the Clebsch-Gordan coefficients are real. The rhs is equivalent with $$ \langle \lambda \mu J'M'|JM\rangle\langle \Phi^J||T^{\lambda}||\Phi^{J'}\rangle^*=\langle \Phi^{J'}_{M'}|(T^{\lambda}_{\mu})^{\dagger}|\Phi^{J}_{M}\rangle, $$ which is equal to $$ \langle \Phi^{J'}_{M'}|(T^{\lambda}_{\mu})^{\dagger}|\Phi^{J}_{M}\rangle=(-1)^{-\lambda+\mu}\langle \lambda -\mu JM|J'M'\rangle\langle \Phi^{J'}||\tilde{T}^{\lambda}||\Phi^{J}\rangle. $$