Angular momentum algebra, Wigner-Eckart theorem

Now, nothing hinders us from recoupling this state by coupling \( j_b \) to \( j_c \), yielding an intermediate angular momentum \( J_{bc} \) and then couple this angular momentum to \( j_a \), resulting in the final angular momentum \( J' \).

That is, we can have $$ \vert(j_a\rightarrow [j_b\rightarrow j_c]J_{bc}) J\rangle = \sum_{m_a'm_b'm_c'}\langle j_bm_b'j_cm_c'|J_{bc}M_{bc}\rangle \langle j_am_a'J_{bc}M_{bc}|J'M'\rangle|\Phi^{abc}\rangle . $$ We will always assume that we work with orthornormal states, this means that when we compute the overlap betweem these two possible ways of coupling angular momenta, we get $$ \begin{align} \langle (j_a\rightarrow [j_b\rightarrow j_c]J_{bc}) J'M'| ([j_a\rightarrow j_b]J_{ab}\rightarrow j_c) JM\rangle = & \delta_{JJ'}\delta_{MM'}\sum_{m_am_bm_c}\langle j_am_aj_bm_b|J_{ab}M_{ab}\rangle \langle J_{ab}M_{ab}j_cm_c|JM\rangle \tag{2}\\ & \times \langle j_bm_bj_cm_c|J_{bc}M_{bc}\rangle \langle j_am_aJ_{bc}M_{bc}|JM\rangle . \tag{3} \end{align} $$