If it is present we arrive at $$ \begin{align} a_\alpha^{\dagger} a_\alpha |\alpha_1\alpha_2 \dots \alpha_{k}\alpha \alpha_{k+1} \dots \alpha_{n-1}\rangle &= a_\alpha^{\dagger} a_\alpha (-1)^k |\alpha \alpha_1\alpha_2 \dots \alpha_{n-1}\rangle \nonumber \\ = (-1)^k |\alpha \alpha_1\alpha_2 \dots \alpha_{n-1}\rangle &= |\alpha_1\alpha_2 \dots \alpha_{k}\alpha \alpha_{k+1} \dots \alpha_{n-1}\rangle \nonumber \\ a_\alpha a_\alpha^{\dagger}|\alpha_1\alpha_2 \dots \alpha_{k}\alpha \alpha_{k+1} \dots \alpha_{n-1}\rangle &= 0 \tag{21} \end{align} $$ From Eqs. (20) and (21) we arrive at $$ \begin{equation} \{a_\alpha^{\dagger} , a_\alpha \} = a_\alpha^{\dagger} a_\alpha + a_\alpha a_\alpha^{\dagger} = 1 \tag{22} \end{equation} $$