Second quantization

Defining $$ \begin{equation} \hat{h}_0(x_i) \psi_{\alpha_i}(x_i) = \sum_{\alpha_k'} \psi_{\alpha_k'}(x_i) \langle\alpha_k'|\hat{h}_0|\alpha_k\rangle \tag{32} \end{equation} $$ we can easily evaluate the action of \( \hat{H}_0 \) on each product of one-particle functions in Slater determinant. From Eq. (32) we obtain the following result without permuting any particle pair $$ \begin{eqnarray} && \left( \sum_i \hat{h}_0(x_i) \right) \psi_{\alpha_1}(x_1)\psi_{\alpha_2}(x_2) \dots \psi_{\alpha_n}(x_n) \nonumber \\ & =&\sum_{\alpha_1'} \langle \alpha_1'|\hat{h}_0|\alpha_1\rangle \psi_{\alpha_1'}(x_1)\psi_{\alpha_2}(x_2) \dots \psi_{\alpha_n}(x_n) \nonumber \\ &+&\sum_{\alpha_2'} \langle \alpha_2'|\hat{h}_0|\alpha_2\rangle \psi_{\alpha_1}(x_1)\psi_{\alpha_2'}(x_2) \dots \psi_{\alpha_n}(x_n) \nonumber \\ &+& \dots \nonumber \\ &+&\sum_{\alpha_n'} \langle \alpha_n'|\hat{h}_0|\alpha_n\rangle \psi_{\alpha_1}(x_1)\psi_{\alpha_2}(x_2) \dots \psi_{\alpha_n'}(x_n) \tag{33} \end{eqnarray} $$