Particle-hole formalism

The next term \( \hat{H}_I^{(b)} \) reads $$ \begin{equation} \hat{H}_I^{(b)} = \frac{1}{4} \sum_{abci}\left(\langle ab|\hat{V}|ci\rangle b_a^\dagger b_b^\dagger b_i^\dagger b_c +\langle ai|\hat{V}|cb\rangle b_a^\dagger b_i b_b b_c\right) \tag{81} \end{equation} $$ This term conserves the number of quasiparticles but creates or removes a three-particle-one-hole state. For \( \hat{H}_I^{(c)} \) we have $$ \begin{eqnarray} \hat{H}_I^{(c)}& =& \frac{1}{4} \sum_{abij}\left(\langle ab|\hat{V}|ij\rangle b_a^\dagger b_b^\dagger b_j^\dagger b_i^\dagger + \langle ij|\hat{V}|ab\rangle b_a b_b b_j b_i \right)+ \nonumber \\ && \frac{1}{2}\sum_{abij}\langle ai|\hat{V}|bj\rangle b_a^\dagger b_j^\dagger b_b b_i + \frac{1}{2}\sum_{abi}\langle ai|\hat{V}|bi\rangle b_a^\dagger b_b. \tag{82} \end{eqnarray} $$