We note that $$ \prod_{i}\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\sum_{b>F}C_{bi}a_{b}^{\dagger}a_{i}| c\rangle =0, $$ and all higher-order powers of these combinations of creation and annihilation operators disappear due to the fact that \( (a_i)^n| c\rangle =0 \) when \( n > 1 \). This allows us to rewrite the expression for \( |c'\rangle \) as $$ |c'\rangle=\prod_{i}\left\{1+\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| c\rangle, $$ which we can rewrite as $$ |c'\rangle=\prod_{i}\left\{1+\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| a^{\dagger}_{i_1} a^{\dagger}_{i_2} \dots a^{\dagger}_{i_n}|0\rangle. $$ The last equation can be written as $$ \begin{align} |c'\rangle&=\prod_{i}\left\{1+\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| a^{\dagger}_{i_1} a^{\dagger}_{i_2} \dots a^{\dagger}_{i_n}|0\rangle=\left(1+\sum_{a>F}C_{ai_1}a_{a}^{\dagger}a_{i_1}\right)a^{\dagger}_{i_1} \tag{86}\\ & \times\left(1+\sum_{a>F}C_{ai_2}a_{a}^{\dagger}a_{i_2}\right)a^{\dagger}_{i_2} \dots |0\rangle=\prod_{i}\left(a^{\dagger}_{i}+\sum_{a>F}C_{ai}a_{a}^{\dagger}\right)|0\rangle. \tag{87} \end{align} $$