With these definitions we write out the energy as $$ \begin{align} \langle c'|H|c'\rangle& = \left(1+\sum_{ai}|\delta C_{ai}|^2\right)\langle c |H|c\rangle+\sum_{ai}|\delta C_{ai}|^2(\varepsilon_a^{HF}-\varepsilon_i^{HF})+\sum_{ijab}A_{ai,bj}\delta C_{ai}^*\delta C_{bj}+ \tag{93}\\ &\frac{1}{2} \sum_{ijab} B_{ai,bj}^*\delta C_{ai}\delta C_{bj}+\frac{1}{2} \sum_{ijab} B_{ai,bj}\delta C_{ai}^*\delta C_{bj}^* +O(\delta C_{ai}^3), \tag{94} \end{align} $$ which can be rewritten as $$ \langle c'|H|c'\rangle = \left(1+\sum_{ai}|\delta C_{ai}|^2\right)\langle c |H|c\rangle+\Delta E+O(\delta C_{ai}^3), $$ and skipping higher-order terms we arrived $$ \frac{\langle c' |\hat{H} | c'\rangle}{\langle c' |c'\rangle} =E_0+\frac{\Delta E}{\left(1+\sum_{ai}|\delta C_{ai}|^2\right)}. $$