If we use Eq. (60) as our new reference state, we can simplify considerably the representation of this state $$ \begin{equation} |c\rangle \equiv |\alpha_1\alpha_2\dots\alpha_{n-1}\alpha_n\rangle = a_{\alpha_1}^\dagger a_{\alpha_2}^\dagger \dots a_{\alpha_{n-1}}^\dagger a_{\alpha_n}^\dagger |0\rangle \tag{63} \end{equation} $$ The new reference states for the \( n+1 \) and \( n-1 \) states can then be written as $$ \begin{eqnarray} |\alpha_1\alpha_2\dots\alpha_{n-1}\alpha_n\alpha_{n+1}\rangle &=& (-1)^n a_{\alpha_{n+1}}^\dagger |c\rangle \equiv (-1)^n |\alpha_{n+1}\rangle_c \tag{64} \\ |\alpha_1\alpha_2\dots\alpha_{n-1}\rangle &=& (-1)^{n-1} a_{\alpha_n} |c\rangle \equiv (-1)^{n-1} |\alpha_{n-1}\rangle_c \tag{65} \end{eqnarray} $$