Because we have fermions, we are required to have antisymmetric wavefunctions, e.g. $$ \Psi(x_1, x_2, x_3, \ldots, x_A) = - \Psi(x_2, x_1, x_3, \ldots, x_A) $$ etc. This is accomplished formally by using the determinantal formalism $$ \Psi(x_1, x_2, \ldots, x_A) = \frac{1}{\sqrt{A!}} \det \left | \begin{array}{cccc} \phi_1(x_1) & \phi_1(x_2) & \ldots & \phi_1(x_A) \\ \phi_2(x_1) & \phi_2(x_2) & \ldots & \phi_2(x_A) \\ \vdots & & & \\ \phi_A(x_1) & \phi_A(x_2) & \ldots & \phi_A(x_A) \end{array} \right | $$ Product wavefunction + antisymmetry = Slater determinant.