If we use a Hartree-Fock basis, this corresponds to a particular unitary transformation where matrix elements of the type \( \langle 0p-0h \vert \hat{H} \vert 1p-1h\rangle =\langle \Phi_0 | \hat{H}|\Phi_{i}^{a}\rangle=0 \) and our Hamiltonian matrix becomes
| \( 0p-0h \) | \( 1p-1h \) | \( 2p-2h \) | \( 3p-3h \) | \( 4p-4h \) | \( 5p-5h \) | \( 6p-6h \) | |
| \( 0p-0h \) | \( \tilde{x} \) | 0 | \( \tilde{x} \) | 0 | 0 | 0 | 0 |
| \( 1p-1h \) | 0 | \( \tilde{x} \) | \( \tilde{x} \) | \( \tilde{x} \) | 0 | 0 | 0 |
| \( 2p-2h \) | \( \tilde{x} \) | \( \tilde{x} \) | \( \tilde{x} \) | \( \tilde{x} \) | \( \tilde{x} \) | 0 | 0 |
| \( 3p-3h \) | 0 | \( \tilde{x} \) | \( \tilde{x} \) | \( \tilde{x} \) | \( \tilde{x} \) | \( \tilde{x} \) | 0 |
| \( 4p-4h \) | 0 | 0 | \( \tilde{x} \) | \( \tilde{x} \) | \( \tilde{x} \) | \( \tilde{x} \) | \( \tilde{x} \) |
| \( 5p-5h \) | 0 | 0 | 0 | \( \tilde{x} \) | \( \tilde{x} \) | \( \tilde{x} \) | \( \tilde{x} \) |
| \( 6p-6h \) | 0 | 0 | 0 | 0 | \( \tilde{x} \) | \( \tilde{x} \) | \( \tilde{x} \) |