Example of a Hamiltonian matrix with a Hartree-Fock basis

If we use a Hartree-Fock basis, this corresponds to a particular unitary transformation where matrix elements of the type \( \langle 0p-0h \vert \hat{H} \vert 1p-1h\rangle =\langle \Phi_0 | \hat{H}|\Phi_{i}^{a}\rangle=0 \) and our Hamiltonian matrix becomes

\( 0p-0h \) \( 1p-1h \) \( 2p-2h \) \( 3p-3h \) \( 4p-4h \) \( 5p-5h \) \( 6p-6h \)
\( 0p-0h \) \( \tilde{x} \) 0 \( \tilde{x} \) 0 0 0 0
\( 1p-1h \) 0 \( \tilde{x} \) \( \tilde{x} \) \( \tilde{x} \) 0 0 0
\( 2p-2h \) \( \tilde{x} \) \( \tilde{x} \) \( \tilde{x} \) \( \tilde{x} \) \( \tilde{x} \) 0 0
\( 3p-3h \) 0 \( \tilde{x} \) \( \tilde{x} \) \( \tilde{x} \) \( \tilde{x} \) \( \tilde{x} \) 0
\( 4p-4h \) 0 0 \( \tilde{x} \) \( \tilde{x} \) \( \tilde{x} \) \( \tilde{x} \) \( \tilde{x} \)
\( 5p-5h \) 0 0 0 \( \tilde{x} \) \( \tilde{x} \) \( \tilde{x} \) \( \tilde{x} \)
\( 6p-6h \) 0 0 0 0 \( \tilde{x} \) \( \tilde{x} \) \( \tilde{x} \)