Full Configuration Interaction Theory

We can then expand our exact state function for the ground state as $$ |\Psi_0\rangle=C_0|\Phi_0\rangle+\sum_{ai}C_i^a|\Phi_i^a\rangle+\sum_{abij}C_{ij}^{ab}|\Phi_{ij}^{ab}\rangle+\dots =(C_0+\hat{C})|\Phi_0\rangle, $$ where we have introduced the so-called correlation operator $$ \hat{C}=\sum_{ai}C_i^a\hat{a}_{a}^{\dagger}\hat{a}_i +\sum_{abij}C_{ij}^{ab}\hat{a}_{a}^{\dagger}\hat{a}_{b}^{\dagger}\hat{a}_j\hat{a}_i+\dots $$ Since the normalization of \( \Psi_0 \) is at our disposal and since \( C_0 \) is by hypothesis non-zero, we may arbitrarily set \( C_0=1 \) with corresponding proportional changes in all other coefficients. Using this so-called intermediate normalization we have $$ \langle \Psi_0 | \Phi_0 \rangle = \langle \Phi_0 | \Phi_0 \rangle = 1, $$ resulting in $$ |\Psi_0\rangle=(1+\hat{C})|\Phi_0\rangle. $$