Definitions and notations

In our case we assume that we can approximate the exact eigenfunction with a Slater determinant $$ \begin{equation} \Phi(x_1, x_2,\dots ,x_A,\alpha,\beta,\dots, \sigma)=\frac{1}{\sqrt{A!}} \left| \begin{array}{ccccc} \psi_{\alpha}(x_1)& \psi_{\alpha}(x_2)& \dots & \dots & \psi_{\alpha}(x_A)\\ \psi_{\beta}(x_1)&\psi_{\beta}(x_2)& \dots & \dots & \psi_{\beta}(x_A)\\ \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ \psi_{\sigma}(x_1)&\psi_{\sigma}(x_2)& \dots & \dots & \psi_{\sigma}(x_A)\end{array} \right|, \tag{3} \end{equation} $$ where \( x_i \) stand for the coordinates and spin values of a particle \( i \) and \( \alpha,\beta,\dots, \gamma \) are quantum numbers needed to describe remaining quantum numbers.