Analysis of Hartree-Fock equations and Koopman's theorem

We can rewrite the ground state energy by adding and subtracting \( \hat{u}^{HF}(x_i) \) $$ E_0^{HF} =\langle \Phi_0 | \hat{H} | \Phi_0\rangle = \sum_{i\le F}^A \langle i | \hat{h}_0 +\hat{u}^{HF}| j\rangle+ \frac{1}{2}\sum_{i\le F}^A\sum_{j \le F}^A\left[\langle ij |\hat{v}|ij \rangle-\langle ij|\hat{v}|ji\rangle\right]-\sum_{i\le F}^A \langle i |\hat{u}^{HF}| i\rangle, $$ which results in $$ E_0^{HF} = \sum_{i\le F}^A \varepsilon_i^{HF} + \frac{1}{2}\sum_{i\le F}^A\sum_{j \le F}^A\left[\langle ij |\hat{v}|ij \rangle-\langle ij|\hat{v}|ji\rangle\right]-\sum_{i\le F}^A \langle i |\hat{u}^{HF}| i\rangle. $$ Our single-particle states \( ijk\dots \) are now single-particle states obtained from the solution of the Hartree-Fock equations.