The calculus of variations involves problems where the quantity to be minimized or maximized is an integral.

In the general case we have an integral of the type $$ E[\Phi]= \int_a^b f(\Phi(x),\frac{\partial \Phi}{\partial x},x)dx, $$ where \( E \) is the quantity which is sought minimized or maximized. The problem is that although \( f \) is a function of the variables \( \Phi \), \( \partial \Phi/\partial x \) and \( x \), the exact dependence of \( \Phi \) on \( x \) is not known. This means again that even though the integral has fixed limits \( a \) and \( b \), the path of integration is not known. In our case the unknown quantities are the single-particle wave functions and we wish to choose an integration path which makes the functional \( E[\Phi] \) stationary. This means that we want to find minima, or maxima or saddle points. In physics we search normally for minima. Our task is therefore to find the minimum of \( E[\Phi] \) so that its variation \( \delta E \) is zero subject to specific constraints. In our case the constraints appear as the integral which expresses the orthogonality of the single-particle wave functions. The constraints can be treated via the technique of Lagrangian multipliers