For \( \psi^* \) the Euler-Lagrange equations yield $$ \frac{\partial f}{\partial \psi^*}- \frac{\partial }{\partial x}\frac{\partial f}{\partial \psi^*_x}-\frac{\partial }{\partial y}\frac{\partial f}{\partial \psi^*_y}-\frac{\partial }{\partial z}\frac{\partial f}{\partial \psi^*_z}=0, $$ which results in $$ -\frac{1}{2}(\psi_{xx}+\psi_{yy}+\psi_{zz})+V\psi=\lambda \psi. $$ We can then identify the Lagrangian multiplier as the energy of the system. The last equation is nothing but the standard Schroedinger equation and the variational approach discussed here provides a powerful method for obtaining approximate solutions of the wave function.