## A general Slater determinant

With our definition of the new basis in terms of an orthogonal basis we have $$\psi_p(x) = \sum_{\lambda} C_{p\lambda}\phi_{\lambda}(x).$$ If the coefficients $$C_{p\lambda}$$ belong to an orthogonal or unitary matrix, the new basis is also orthogonal. Our Slater determinant in the new basis $$\psi_p(x)$$ is written as $$\frac{1}{\sqrt{A!}} \left| \begin{array}{ccccc} \psi_{p}(x_1)& \psi_{p}(x_2)& \dots & \dots & \psi_{p}(x_A)\\ \psi_{q}(x_1)&\psi_{q}(x_2)& \dots & \dots & \psi_{q}(x_A)\\ \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ \psi_{t}(x_1)&\psi_{t}(x_2)& \dots & \dots & \psi_{t}(x_A)\end{array} \right|=\frac{1}{\sqrt{A!}} \left| \begin{array}{ccccc} \sum_{\lambda} C_{p\lambda}\phi_{\lambda}(x_1)& \sum_{\lambda} C_{p\lambda}\phi_{\lambda}(x_2)& \dots & \dots & \sum_{\lambda} C_{p\lambda}\phi_{\lambda}(x_A)\\ \sum_{\lambda} C_{q\lambda}\phi_{\lambda}(x_1)&\sum_{\lambda} C_{q\lambda}\phi_{\lambda}(x_2)& \dots & \dots & \sum_{\lambda} C_{q\lambda}\phi_{\lambda}(x_A)\\ \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ \sum_{\lambda} C_{t\lambda}\phi_{\lambda}(x_1)&\sum_{\lambda} C_{t\lambda}\phi_{\lambda}(x_2)& \dots & \dots & \sum_{\lambda} C_{t\lambda}\phi_{\lambda}(x_A)\end{array} \right|,$$ which is nothing but $$det(\mathbf{C})det(\Phi)$$, with $$det(\Phi)$$ being the determinant given by the basis functions $$\phi_{\lambda}(x)$$.