Linking the monopole part with Hartree-Fock theory, angular momentum

We can rewrite this equation in an angular coupled basis (\( jj \)-coupled basis) as $$ \begin{equation} \epsilon_{\alpha_p}= \langle \alpha_p|\hat{h}_0|\alpha_p\rangle+\frac{1}{2j_p+1}\sum_{\alpha_i\le \alpha_F}\sum_{J} (2J+1)\langle (\alpha_p\alpha_i)J | \hat{v} | (\alpha_p\alpha_i)J \rangle, \tag{23} \end{equation} $$ or $$ \begin{equation} \epsilon_{\alpha_p}= \langle \alpha_p|\hat{h}_0|\alpha_p\rangle+\frac{1}{2j_p+1}\sum_{\alpha_i\le \alpha_F}\sum_{J} (2J+1)\langle (\alpha_p\alpha_i)J | \tilde{v} | (\alpha_p\alpha_i)J \rangle, \tag{24} \end{equation} $$ where the first equation contains a two-body force only while Eq. (24) includes the medium-modified contribution from the three-body interaction as well.