Analysis of Hartree-Fock equations and Koopman's theorem

We have $$ E[\Phi^{\mathrm{HF}}(N)] = \sum_{i=1}^H \langle i | \hat{h}_0 | i \rangle + \frac{1}{2}\sum_{ij=1}^N\langle ij|\hat{v}|ij\rangle_{AS}, $$ where \( \Phi^{\mathrm{HF}}(N) \) is the new Slater determinant defined by the new basis of Eq. (13) for \( N \) electrons (same \( Z \)). If we assume that the single-particle wave functions in the new basis do not change when we remove one electron or add one electron, we can then define the corresponding energy for the \( N-1 \) systems as $$ E[\Phi^{\mathrm{HF}}(N-1)] = \sum_{i=1; i\ne k}^N \langle i | \hat{h}_0 | i \rangle + \frac{1}{2}\sum_{ij=1;i,j\ne k}^N\langle ij|\hat{v}|ij\rangle_{AS}, $$ where we have removed a single-particle state \( k\le F \), that is a state below the Fermi level.