We can generalize the previous results, now with all elements \( a_{ij} \) being given as functions of linear combinations of various coefficients \( c \) and elements \( b_{ij} \), $$ \left| \begin{array}{cccccc} \sum_{k=1}^n b_{1k}c_{k1}& \sum_{k=1}^n b_{1k}c_{k2} & \dots & \sum_{k=1}^n b_{1k}c_{kj} &\dots & \sum_{k=1}^n b_{1k}c_{kn}\\ \sum_{k=1}^n b_{2k}c_{k1}& \sum_{k=1}^n b_{2k}c_{k2} & \dots & \sum_{k=1}^n b_{2k}c_{kj} &\dots & \sum_{k=1}^n b_{2k}c_{kn}\\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots &\dots \\ \sum_{k=1}^n b_{nk}c_{k1}& \sum_{k=1}^n b_{nk}c_{k2} & \dots & \sum_{k=1}^n b_{nk}c_{kj} &\dots & \sum_{k=1}^n b_{nk}c_{kn}\end{array} \right|=det(\mathbf{C})det(\mathbf{B}), $$ where \( det(\mathbf{C}) \) and \( det(\mathbf{B}) \) are the determinants of \( n\times n \) matrices with elements \( c_{ij} \) and \( b_{ij} \) respectively. This is a property we will use in our Hartree-Fock discussions. Convince yourself about the correctness of the above expression by setting \( n=2 \).