Hartree-Fock algorithm

Normally we assume that the single-particle basis \( |\beta\rangle \) forms an eigenbasis for the operator \( \hat{h}_0 \), meaning that the Hartree-Fock matrix becomes $$ \hat{h}_{\alpha\beta}^{HF}=\epsilon_{\alpha}\delta_{\alpha,\beta}+ \sum_{j=1}^A\sum_{\gamma\delta} C^*_{j\gamma}C_{j\delta}\langle \alpha\gamma|\hat{v}|\beta\delta\rangle_{AS}. $$ The Hartree-Fock eigenvalue problem $$ \sum_{\beta}\hat{h}_{\alpha\beta}^{HF}C_{i\beta}=\epsilon_i^{\mathrm{HF}}C_{i\alpha}, $$ can be written out in a more compact form as $$ \hat{h}^{HF}\hat{C}=\epsilon^{\mathrm{HF}}\hat{C}. $$